発表年別リストはこちら 項目にジャンプ→ <会議録等>、<総説>、<解説>、<著書>、<特許>
<プレプリント>
<原著論文>
99. | Nonequilibrium Self‐Assembly of Microtubules Through Stepwise Sequential Interactions of DNA |
Jakia Jannat Keya, Mousumi Akter, Yuta Yamasaki, Yoshiyuki Kageyama, Kazuki Sada, Akinori Kuzuya,* Akira Kakugo* | |
Small 2024, 2408364. | |
98. | DNA Origami-Constructed Nanotapes for Sunitinib Adsorption and Inhibition of Renal Clear Carcinoma Cells |
Lin Li, Xuxiang Yao, Pengyao Wei, Dongdong He, Qiaojiao Ding, Bing Bai, Xiuyi Lv, Akinori Kuzuya, Yuling Wang, Kerong Wu,* Kaizhe Wang,* Jianping Zheng* | |
ACS Omega 2024, 9 (31), 33765–33772. | |
97. | Sustained-Release of Antigens and CpG-DNA using Temperature-Responsive Biodegradable Injectable Polymers: Performance on Induction of Immune Responses |
Yuta Yoshizaki,* Kenta Horii, Nobuo Murase, Akinori Kuzuya, and Yuichi Ohya* | |
Adv. Ther. 2024, 7 (8), 2300296. | |
96. | Gelation upon the Mixing of Amphiphilic Graft and Triblock Copolymers Containing Enantiomeric Polylactide Segments through Stereocomplex Formation |
Yuichi Ohya*, Yasuyuki Yoshida, Taiki Kumagae, and Akinori Kuzuya | |
Gels 2024, 10 (2), 139. | |
95. | Synthesis of Topological Gels by Penetrating Polymerization Using a Molecular Net |
Yuichi Ohya*, Ryota Dohi, Fumika Seko, Yuto Nakazawa, Ken-ichiro Mizuguchi, Kosei Shinzaki, Takahiko Yasui, Hiroaki Ogawa, Shizuka Kato, Yuta Yoshizaki, Nobuo Murase, and Akinori Kuzuya | |
Angew. Chem. Int. Ed. 2024, 63 (11), e202317045. | |
94. | Development of immune cell delivery system using biodegradable injectable polymers for cancer immunotherapy |
Yuta Yoshizaki,* Kenta Horii, Nobuo Murase, Akinori Kuzuya, and Yuichi Ohya* | |
Int. J. Pharm. 2024, 652, 123801. | |
93. | Drug Delivery with Hyaluronic Acid-Coated Polymeric Micelles in Liver Fibrosis Therapy |
Yuta Yoshizaki, Manami Yamasaki, Takuya Nagata, Kengo Suzuki, Rio Yamada, Takuma Kato, Nobuo Murase, Akinori Kuzuya, Akira Asai, Kazuhide Higuchi, Kosuke Kaji, Hitoshi Yoshiji, and Yuichi Ohya* | |
ACS Biomater. Sci. Eng. 2023, 9 (6), 3414-3424. | |
92. | A systematic study on the effects of the structure of block copolymers of PEG and poly(ε-caprolactone-co-glycolic acid) on their temperature-responsive sol-to-gel transition behavior |
Yuichi Ohya,* Hidenori Yonezawa, Chiro Moriwaki, Nobuo Murase, and Akinori Kuzuya | |
Polym. Chem. 2023, 14 (12), 1350-1358. | |
91. | Loss of multipotency in adipose-derived stem cells after culture in temperature-responsive injectable polymer hydrogels |
Nozomi Mayumi, Nobuo Murase, Yuta Yoshizaki, Akinori Kuzuya, and Yuichi Ohya* | |
Polym. J. 2023, 55 (3), 261-271. | |
90. | Synthesis of degradable double network gels using a hydrolysable cross-linker |
Takanori Yokoi, Akinori Kuzuya, Tasuku Nakajima, Takayuki Kurokawa, Jian Ping Gong, and Yuichi Ohya* | |
Polym. Chem. 2022, 13 (25), 3756-3762. | |
89. | Cooperative cargo transportation by a swarm of molecular machines |
Mousumi Akter, Jakia Jannat Keya, Kentaro Kayano, Arif Md. Rashedul Kabir, Daisuke Inoue, Henry Hess, Kazuki Sada, Akinori Kuzuya, Hiroyuki Asanuma, and Akira Kakugo* | |
Science Robot. 2022, 7 (65), eabm0677. | |
Featured in 日刊工業新聞, マイナビニュース | |
88. | Preparation of hyaluronic acid-coated polymeric micelles for nasal vaccine delivery |
Keigo Suzuki, Yuta Yoshizaki, Kenta Horii, Nobuo Murase, Akinori Kuzuya, and Yuichi Ohya* | |
Biomater. Sci. 2022, 10 (8), 1920-1928. | |
87. | Reactive-Oxygen-Species-Mediated Surface Oxidation of Single-Molecule DNA Origami by an Atomic Force Microscope Tip-Mounted C60 Photocatalyst |
Ankita Ray, Cristiana Passiu, Masayuki Nasuda, Shivaprakash N. Ramakrishna, Antonella Rossi, Akinori Kuzuya, Nicholas D. Spencer, and Yoko Yamakoshi* | |
ACS Nano 2021, 15 (12), 19256-19265. | |
86. | Temperature-Responsive Biodegradable Injectable Polymers with Tissue Adhesive Properties |
Soichiro Fujiwara, Yuta Yoshizaki, Akinori Kuzuya, and Yuichi Ohya* | |
Acta Biomaterialia 2021, 135, 318-330. | |
85. | Cellular therapy for myocardial ischemia using a temperature-responsive biodegradable injectable polymer system with adipose-derived stem cells |
Yuta Yoshizaki, Hiroki Takai, Nozomi Mayumi, Soichiro Fujiwara, Akinori Kuzuya, and Yuichi Ohya* | |
Sci. Technol. Adv. Mater. 2021, 22 (1), 627-642. | |
84. | Postoperative Adhesion Prevention Using a Biodegradable Temperature-Responsive Injectable Polymer System and Concomitant Effects of the Chymase Inhibitor |
Yuta Yoshizaki, Takuya Nagata, Soichiro Fujiwara, Shinji Takai, Denan Jin, Akinori Kuzuya, and Yuichi Ohya* | |
ACS Appl. Bio Mater. 2021, 4 (4), 3079-3088. | |
83. | Modeling a Microtubule Filaments Mesh Structure from Confocal Microscopy Imaging |
Yutaka Ueno,* Kento Matsuda, Kaoru Katoh, Akinori Kuzuya, Akira Kakugo, and Akihiko Konagaya | |
Micromachines 2020, 11 (9), 844. | |
82. | An intermolecular-split G-quadruplex DNAzyme sensor for dengue virus detection |
Jeunice Ida, Akinori Kuzuya, Yee Siew Choong, and Theam Soon Lim* | |
RSC Adv. 2020, 10 (55), 33040-33051. | |
81. | Single-molecule AFM study of DNA damage by 1O2 generated from photoexcited C60 |
Ankita Ray, Korinne Liosi, Shivaprakash N. Ramakrishna, Nicholas D. Spencer, Akinori Kuzuya,* and Yoko Yamakoshi* | |
J. Phys. Chem. Lett. 2020, 11 (18), 7819-7826. | |
80. | Versatile cell-specific ligand arrangement system onto desired compartments of biodegradable matrices for site-selective cell adhesion using DNA tags |
Hiromichi Sumida, Yuta Yoshizaki, Akinori Kuzuya, and Yuichi Ohya* | |
Biomacromolecules 2020, 21 (9), 3713-3723. | |
79. | Reversible Changes in the Orientation of Gold Nanorod Arrays on Polymer Brushes |
Yu Sekizawa, Hideyuki Mitomo,* Mizuki Nihei, Satoshi Nakamura, Yusuke Yonamine, Akinori Kuzuya, Takehiko Wada, and Kuniharu Ijiro* | |
Nanoscale Adv. 2020, 2 (9), 3798-3803. | |
78. | Sustained Drug-Releasing Systems Using Temperature-Responsive Injectable Polymers Containing Liposomes |
Yuta Yoshizaki, Hiroki Yamamoto, Akinori Kuzuya, and Yuichi Ohya* | |
ACS Symp. Ser. 2020, 1350, 35-45. | |
77. | Cellular Attachment Behavior on Biodegradable Polymer Surface Immobilizing Endothelial Cell-Specific Peptide |
Yuichi Ohya,* Kazuki Nishimura, Hiromichi Sumida, Yuta Yoshizaki, Akinori Kuzuya, Atsushi Mahara, and Tetsuji Yamaoka* | |
J. Biomater. Sci., Polym. Ed. 2020, 31 (11), 1475-1488. | |
76. | Thermal properties and degradation of enantiomeric copolyesteramides poly(lactic acid-co-alanine)s |
Hideto Tsuji,* Shotaro Sato, Noriaki Masaki, Yuki Arakawa, Yuta Yoshizaki, Akinori Kuzuya, and Yuichi Ohya* | |
Polym. Degrad. Stab. 2020, 171, 109047. | |
75. | Stereocomplex crystallization, homocrystallization, and polymorphism of enantiomeric copolyesteramides poly(lactic acid‐co‐alanine)s from the melt |
Hideto Tsuji,* Shotaro Sato, Noriaki Masaki, Yuki Arakawa, Yuta Yoshizaki, Akinori Kuzuya, and Yuichi Ohya* | |
Polym. Crystallization 2020, 3 (2), e10094. | |
74. | Artificial Smooth Muscle Model Composed of Hierarchically Ordered Microtubule Asters Mediated by DNA Origami Nanostructures |
Kento Matsuda, Arif Md. Rashedul Kabir, Naohide Akamatsu, Ai Saito, Shumpei Ishikawa, Tsuyoshi Matsuyama, Oliver Ditzer, Md. Sirajul Islam, Yuichi Ohya, Kazuki Sada, Akihiko Konagaya, Akinori Kuzuya,* and Akira Kakugo* | |
Nano Lett. 2019, 19 (6), 3933-3938. | |
Featured in 日刊工業新聞, 日経産業新聞 | |
73. | Application of DNA Quadruplex Hydrogels Prepared from Polyethylene Glycol-Oligodeoxynucleotide Conjugates to Cell Culture Media |
Shizuma Tanaka, Shinsuke Yukami, Yuhei Hachiro, Yuichi Ohya,* and Akinori Kuzuya* | |
Polymers 2019, 11 (10), 1607. | |
72. | DNA Quadruplex Hydrogel Beads Showing Peroxidase Activity |
Shizuma Tanaka, Soo Khim Chan, Theam Soon Lim, Yuichi Ohya, and Akinori Kuzuya* | |
J. Electrochem. Soc. 2019, 166 (9), B3271-B3273. | |
71. | DNA Switch: Toehold-Mediated DNA Isothermal Amplification for Dengue Serotyping |
Soo Khim Chan, Akinori Kuzuya, Yee Siew Choong, and Theam Soon Lim* | |
SLAS Discov. 2019, 24 (1), 68-76. | |
70. | Bulk pH Responsive DNA Quadruplex Hydrogels Prepared by Liquid-Phase, Large-Scale DNA Synthesis |
Shizuma Tanaka, Shinsuke Yukami, Kazuki Fukushima, Kenta Wakabayashi, Yuichi Ohya,* and Akinori Kuzuya* | |
ACS Macro Lett. 2018, 7 (3), 295-299. | |
69. | DNA-assisted swarm control in a biomolecular motor system |
Jakia Jannat Keya, Ryuhei Suzuki, Arif Md. Rashedul Kabir, Daisuke Inoue, Hiroyuki Asanuma, Kazuki Sada, Henry Hess, Akinori Kuzuya,* and Akira Kakugo* | |
Nature Commun. 2018, 9, 453. | |
Featured in 日刊工業新聞, 日経産業新聞, Chemistry World | |
68. | Control of swarming of molecular robots |
Jakia Jannat Keya, Arif Md. Rashedul Kabir, Daisuke Inoue, Kazuki Sada, Henry Hess, Akinori Kuzuya,* and Akira Kakugo* | |
Sci. Rep. 2018, 8, 11756. | |
67. | Synthesis, stereocomplex crystallization and homo-crystallization of enantiomeric poly(lactic acid-co-alanine)s with ester and amide linkages |
Hideto Tsuji,* Shotaro Sato, Noriaki Masaki, Yuki Arakawa, Akinori Kuzuya, and Yuichi Ohya* | |
Polym. Chem. 2018, 9 (5), 565-575. | |
66. | Preparation of Biodegradable Oligo(lactide)s-Grafted Dextran Nanogels for Efficient Drug Delivery by Controlling Intracellular Traffic |
Yuichi Ohya,* Akihiro Takahashi, and Akinori Kuzuya | |
Int. J. Mol. Sci. 2018, 16 (6), 1606. | |
65. | Intelligent, biodegradable, and self-healing hydrogels utilizing DNA quadruplexes |
Shizuma Tanaka, Kenta Wakabayashi, Kazuki Fukushima, Shinsuke Yukami, Ryuki Maezawa, Yuhei Takeda, Kohei Tatsumi, Yuichi Ohya,* and Akinori Kuzuya* | |
Chem. Asian J. 2017, 12 (18), 2388-2392. | |
64. | Allosteric Control of Nanomechanical DNA Origami Pinching Devices for Enhanced Target Binding |
Akinori Kuzuya,* Yusuke Sakai, Takahiro Yamazaki, Yan Xu, Yusei Yamanaka, Yuichi Ohya, and Makoto Komiyama* | |
Chem. Commun. 2017, 53 (59), 8276-8279. | |
63. | Site-Selective RNA Activation by Acridine-Modified Oligodeoxynucleotides: A Comprehensive Study |
Akinori Kuzuya,* Yun Shi, Keita Tanaka, Kenzo Machida, and Makoto Komiyama* | |
ACS Omega 2017, 2 (9), 5370-5377. | |
62. | “DNA origami traffic lights” with split aptamer sensor for bicolor fluorescence readout |
Heidi-Kristin Walter, Jens Bauer, Jeannine Steinmeyer, Akinori Kuzuya, Christof M. Niemeyer, and Hans-Achim Wagenknecht* | |
Nano Lett. 2017, 17 (4), 2467-2472. | |
61. | Peptide drug release behavior from biodegradable temperature-responsive injectable hydrogels exhibiting irreversible gelation |
Kazuyuki Takata, Hiroki Takai, Yuta Yoshizaki, Takuya Nagata, Keisuke Kawahara, Yasuyuki Yoshida, Akinori Kuzuya, and Yuichi Ohya* | |
Gels 2017, 3 (4), 38. | |
60. | Analysis of the sol-to-gel transition behavior of temperature-responsive injectable polymer systems by fluorescence resonance energy transfer |
Kazuyuki Takata, Keisuke Kawahara, Yasuyuki Yoshida, Akinori Kuzuya, and Yuichi Ohya* | |
Polym. J. 2017, 49 (9), 677-684. | |
59. | Extemporaneously preparative biodegradable injectable polymer systems exhibiting temperature-responsive irreversible gelation |
Yasuyuki Yoshida, Kazuyuki Takata, Hiroki Takai, Keisuke Kawahara, Akinori Kuzuya, and Yuichi Ohya* | |
J. Biomat. Sci. Polym. Ed. 2017, 28 (14), 1427-1443. | |
58. | Injectable and biodegradable temperature-responsive mixed polymer systems providing variable gel-forming pH regions |
Yasuyuki Yoshida, Keisuke Kawahara, Akinori Kuzuya, and Yuichi Ohya* | |
J. Biomat. Sci. Polym. Ed. 2017, 28 (10-12), 1158-1171. | |
57. | Biodegradable injectable polymer systems exhibiting longer and controllable duration time of the gel state |
Yasuyuki Yoshida, Hiroki Takai, Keisuke Kawahara, Kazuyuki Takata, Shintaro Mitsumune, Akinori Kuzuya, and Yuichi Ohya* | |
Biomater. Sci. 2017, 5 (7), 1304-1314. | |
56. | Biodegradable Injectable Polymer Systems Exhibiting Temperature-Responsive Irreversible Sol-to-Gel Transition by Covalent Bond Formation |
Yasuyuki Yoshida, Keisuke Kawahara, Kenta Inamoto, Shintaro Mitsumune, Shinya Ichikawa, Akinori Kuzuya, and Yuichi Ohya* | |
ACS Biomater. Sci. Eng. 2017, 3 (1), 56-67. | |
55. | Synthesis and Temperature-responsiveness of Poly(ethylene glycol)-like Biodegradable Poly(ether-ester)s |
Yuichi Ohya,* Akihiro Takahashi, Hiroki Takaishi, Akinori Kuzuya | |
ACS Symp. Ser. 2017, 1253, 93-104. | |
54. | A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly |
Maia Godonoga, Ting-Yu Lin, Azusa Oshima, Koji Sumitomo, Marco S. L. Tang, Yee-Wai Cheung, Andrew B. Kinghorn, Roderick M. Dirkzwager, Cunshan Zhou, Akinori Kuzuya, Julian A. Tanner, and Jonathan G. Heddle* | |
Sci. Rep. 2016, 6, 21266. | |
53. | Stereocomplex- and homo-crystallization of blends from 2-armed poly(l-lactide) and poly(d-lactide) with identical and opposite chain directional architectures and of 2-armed stereo diblock poly(lactide) |
Hideto Tsuji,* Kentaro Tamai, Takayuki Kimura, Akiyo Kubota, Akihiro Takahashi, Akinori Kuzuya, Yuichi Ohya* | |
Polymer 2016, 96, 167-181. | |
52. | Crosslinked duplex DNA nanogels that target specified proteins |
Yasuhiko Iwasaki,* Jun-ichi Kondo, Akinori Kuzuya, Rui Moriyama | |
Sci. Tech. Adv. Mater. 2016, 17 (1), 285-292. | |
51. | Automatic Recognition of DNA Pliers in Atomic Force Microscopy Images |
Yuexing Han,* Akito Hara, Akinori Kuzuya, Ryosuke Watanabe, Yuichi Ohya, and Akihiko Konagaya | |
New Gener. Comput. 2015, 33 (3), 253-270. | |
50. | Encapsulation of a Gold Nanoparticle in a DNA Origami Container |
Akinori Kuzuya,* Masafumi Kaino, Mirai Hashizume, Kazuki Matsumoto, Takeaki Uehara, Yasutaka Matsuo, Hideyuki Mitomo, Kenichi Niikura, Kuniharu Ijiro, and Yuichi Ohya* | |
Polym. J. 2015, 47 (2), 177-182. | |
49. | Orthogonal Enzyme Arrays on a DNA Origami Scaffold Bearing Size-Tunable Wells |
Takahiro Yamazaki, Jonathan Gardiner Heddle, Akinori Kuzuya,* and Makoto Komiyama* | |
Nanoscale 2014, 6 (15), 9122-9126. | |
48. | Nanomechanical DNA Origami pH Sensors |
Akinori Kuzuya,* Ryosuke Watanabe, Yusei Yamanaka, Takuya Tamaki, Masafumi Kaino, and Yuichi Ohya* | |
Sensors 2014, 14 (10), 19329-19335. | |
47. | Precise Structure Control of Three-State Nanomechanical DNA Origami Devices |
Akinori Kuzuya,* Ryosuke Watanabe, Mirai Hashizume, Masafumi Kaino, Shinya Minamida, Koji Kameda, and Yuichi Ohya* | |
Methods 2014, 67 (2), 250-255. | |
46. | Instant preparation of a biodegradable injectable polymer formulation exhibiting a temperature-responsive sol-gel transition |
Yasuyuki Yoshida, Akihiro Takahashi, Akinori Kuzuya, Yuichi Ohya* | |
Polym. J. 2014, 46 (9), 632-635. | |
45. | A Macromolecular Prodrug-type Injectable Polymer Composed of Poly(depsipeptide-co-lactide)-g-PEG for Sustained Release of Drugs |
Akihiro Takahashi, Masaya Umezaki, Yasuyuki Yoshida, Akinori Kuzuya, Yuichi Ohya* | |
Polym. Adv. Technol. 2014, 25 (11), 1226-1233. | |
44. | Impact of Core-Forming Segment Structure on Drug Loading in Biodegradable Polymeric Micelles Using PEG-b-Poly(lactide-co-depsipeptide) Block Copolymers |
Akihiro Takahashi, Yuta Ozaki, Akinori Kuzuya, Yuichi Ohya* | |
Biomed Res. Int. 2014, 579212. | |
43. | The Effects of Molecular Structure on Sol-to-gel Transition of Biodegradable Poly(depsipeptide-co-lactide)-g-PEG Copolymers |
Akihiro Takahashi, Masaya Umezaki, Yasuyuki Yoshida, Akinori Kuzuya, and Yuichi Ohya* | |
J. Biomat. Sci. Polym. Ed. 2014, 25 (5), 444-454. | |
42. | Design of Biodegradable Injectable Polymers Exhibiting Temperature-Responsive Sol-Gel Transition |
Yuichi Ohya, Hiroyuki Suzuki, Koji Nagahama, Akihiro Takahashi, Tatsuro Ouchi, Akinori Kuzuya | |
Adv. Sci. Technol. 2013, 86, 9-16. | |
41. | Clear-Cut Observation of PNA Invasion Using Nanomechanical DNA Origami Devices |
Takahiro Yamazaki, Yuichiro Aiba, Kohei Yasuda, Yusuke Sakai, Yusei Yamanaka, Akinori Kuzuya,* Yuichi Ohya, and Makoto Komiyama* | |
Chem. Commun. 2012, 48 (92), 11361-11363. | |
40. | Enzyme Treatment-Free and Ligation-Independent Cloning Using Caged Primers in Polymerase Chain Reactions |
Akinori Kuzuya,* Keita Tanaka, Hitoshi Katada, Makoto Komiyama* | |
Molecules 2012, 17 (1), 328-340. | |
39. | Formation of 1D and 2D Gold Nanoparticle Arrays by Divalent DNA-Gold Nanoparticle Conjugates |
Yuichi Ohya,* Nozomi Miyoshi, Mirai Hashizume, Takuya Tamaki, Takeaki Uehara, Shoso Shingubara, Akinori Kuzuya | |
Small 2012, 8 (15), 2335-2340. | |
38. | Nanomechanical DNA Origami ‘Single-Molecule Beacons’ Directly Imaged by Atomic Force Microscopy |
Akinori Kuzuya,* Yusuke Sakai, Takahiro Yamazaki, Yan Xu, and Makoto Komiyama* | |
Nature Commun. 2011, 2, 449. | |
Featured in 科研費NEWSレター | |
37. | Photo-Switching of Site-Selective RNA Scission by Sequential Incorporation of Azobenzene and Acridine Residues in a DNA Oligomer |
Akinori Kuzuya, Keita Tanaka, Makoto Komiyama* | |
J. Nucleic Acids 2011, 2011, 162452. | |
36. | Programmed Nanopatterning of Organic/Inorganic Nanoparticles Using Nanometer-Scale Wells Embedded in a DNA Origami Scaffold |
Akinori Kuzuya,* Naohiro Koshi, Mayumi Kimura, Kentaro Numajiri, Takahiro Yamazaki, Toshiyuki Ohnishi, Fuminori Okada, Makoto Komiyama* | |
Small 2010, 6 (23), 2664-2667. | |
35. | Discrete and Active Enzyme Nanoarrays on DNA Origami Scaffolds Purified by Affinity Tag Separation |
Kentaro Numajiri, Takahiro Yamazaki, Mayumi Kimura, Akinori Kuzuya,* Makoto Komiyama* | |
J. Am. Chem. Soc. 2010, 132 (29), 9937-9939. | |
34. | Stepwise and Reversible Nanopatterning of Proteins on a DNA Origami Scaffold |
Kentaro Numajiri, Mayumi Kimura, Akinori Kuzuya,* Makoto Komiyama* | |
Chem. Commun. 2010, 46 (28), 5127-5129. | |
33. | Blunt-Ended DNA Stacking Interactions in a 3-Helix Motif |
Risheng Wang, Akinori Kuzuya, Wenyan Liu, and Nadrian C. Seeman* | |
Chem. Commun. 2010, 46 (27), 4905-4907. | |
32. | Asymmetric Secondary and Tertiary Streptavidin/DNA Complexes Selectively Formed in a Nanometer-Scale DNA Well |
Kentaro Numajiri, Akinori Kuzuya,* Makoto Komiyama* | |
Bioconjugate Chem. 2010, 21 (2), 338-344. | |
31. | Dethreading of Deoxyribonucleotides through α-Cyclodextrin |
Akinori Kuzuya,* Toshiyuki Ohnishi, Takahiro Yamazaki, Makoto Komiyama* | |
Chem. Asian J. 2010, 5 (10), 2177-2180. | |
30. | Precisely Programmed and Robust 2D Streptavidin Nanoarrays by Using Periodical Nanometer-Scale Wells Embedded in DNA Origami Assembly |
Akinori Kuzuya,* Mayumi Kimura, Kentaro Numajiri, Naohiro Koshi, Toshiyuki Ohnishi, Fuminori Okada, Makoto Komiyama* | |
ChemBioChem 2009, 10 (11), 1811-1815. | |
29. | Efficient Guest Inclusion by β-Cyclodextrin Attached to the Ends of DNA Oligomers upon Hybridization to Various DNA Conjugates |
Akinori Kuzuya,* Toshiyuki Ohnishi, Tsugutoshi Wasano, Suguru Nagaoka, Jun Sumaoka, Toshihiro Ihara,* Akinori Jyo, Makoto Komiyama* | |
Bioconjugate Chem. 2009, 20 (8), 1643-1649. | |
28. | Precise Site-Selective Termination of DNA Replication by Caging The 3-Position of Thymidine and Its Application to Polymerase Chain Reaction |
Akinori Kuzuya,* Fuminori Okada, Makoto Komiyama* | |
Bioconjugate Chem. 2009, 20 (10), 1924-1929. | |
27. | Design and Construction of a Box-Shaped 3D-DNA Origami |
Akinori Kuzuya,* and Makoto Komiyama* | |
Chem. Commun. 2009 (28), 4182-4184. | |
Selected as a Hot Article, and featured in Highlights in Chemical Science | |
26. | Efficient Site-selective RNA Activation and Scission Achieved by Geometry Control of Acridine Intercalation in RNA/DNA Heteroduplex |
Akinori Kuzuya, Yun Shi, Keita Tanaka, Kenzo Machida, Makoto Komiyama* | |
Chem. Lett. 2009, 38 (5), 432-433. | |
25. | DNA/α-Cyclodextrin-Rotaxane Conjugate as a New Supramolecular Material |
Akinori Kuzuya,* Toshiyuki Ohnishi, Makoto Komiyama* | |
Chem. Lett. 2008, 37 (9), 996-997. | |
24. | Synthesis of Photo-Responsive Acridine-Modified DNA and Its Application to Site-Selective RNA Scission |
Keita Tanaka, Yoji Yamamoto, Akinori Kuzuya, and Makoto Komiyama* | |
Nucleosides, Nucleotides Nucleic Acids 2008, 27 (10-11), 1175-1185. | |
23. | Site-Selective Blocking of PCR by a Caged Nucleotide Leading to Direct Creation of Desired Sticky Ends in The Products |
Keita Tanaka, Hitoshi Katada, Narumi Shigi, Akinori Kuzuya,* and Makoto Komiyama* | |
ChemBioChem 2008, 9 (13), 2120-2126. | |
22. | Site-Selective Termination of DNA Replication by Using a Caged Template |
Keita Tanaka, Akinori Kuzuya,* and Makoto Komiyama* | |
Chem. Lett. 2008, 37 (6), 584-585. | |
21. | Accommodation of a Single Protein Guest in Nanometer-Scale Wells Embedded in a “DNA Nanotape” |
Akinori Kuzuya, Kentaro Numajiri, and Makoto Komiyama* | |
Angew. Chem., Int. Ed. 2008, 47 (18), 3400-3402. | |
20. | Coupling Across a DNA Helical Turn Yields a Hybrid DNA/Organic Catenane Doubly Tailed with Functional Termini |
Yu Liu, Akinori Kuzuya, Ruojie Sha, Johan Guillaume, Risheng Wang, James W. Canary,* and Nadrian C. Seeman* | |
J. Am. Chem. Soc. 2008, 130 (33), 10882-10883. | |
19. | Six-Helix and Eight-Helix DNA Nanotubes Assembled from Half-Tubes |
Akinori Kuzuya, Risheng Wang, Ruojie Sha, and Nadrian C. Seeman* | |
Nano Lett. 2007, 7 (6), 1757-1763. | |
18. | Simultaneous Genotyping of Indels and SNPs by Mass Spectroscopy |
Takuro Sasayama, Mayu Kato, Hiroyuki Aburatani, Akinori Kuzuya, and Makoto Komiyama* | |
J. Am. Soc. Mass Spectrom. 2006, 17 (1), 3-8. | |
17. | Lanthanide Ions as Versatile Catalyst in Biochemistry: Efficient Site-selective Scission of RNA by Free Lanthanide Ions |
Akinori Kuzuya, Kenzo Machida, Takuro Sasayama, Yun Shi, Ryo Mizoguchi, and Makoto Komiyama* | |
J. Alloy. Compd. 2006, 408-412, 396-399. | |
16. | Design of Phosphoramidite Monomer for Optimal Incorporation of Functional Intercalator to Main Chain of Oligonucleotide |
Yun Shi, Kenzo Machida, Akinori Kuzuya, and Makoto Komiyama* | |
Bioconjugate Chem. 2005, 16 (2), 306-311. | |
15. | Cooperation of Metal-Ion Fixation and Target-Site Activation for Efficient Site-Selective RNA Scission |
Akinori Kuzuya, Yun Shi, Takuro Sasayama, and Makoto Komiyama* | |
J. Biol. Inorg. Chem. 2005, 10 (3), 270-274. | |
14. | Selective Activation of Two Sites in RNA by Acridine-bearing Oligonucleotides for Clipping of Designated RNA Fragment |
Akinori Kuzuya, Ryo Mizoguchi, Takuro Sasayama, J.-M. Zhou, and Makoto Komiyama* | |
J. Am. Chem. Soc. 2004, 126 (5), 1430-1436. | |
13. | Crucial Role of Linker Portion in Acridine-Bearing Oligonucleotides for Highly Efficient Site-Selective RNA Scission |
Yun Shi, Akinori Kuzuya, Kenzo Machida, and Makoto Komiyama* | |
Tetrahedron Lett. 2004, 45 (19), 3703-3706. | |
12. | Non-Covalent Combination of Oligoamine and Oligonucleotide As Totally Organic Site-Selective RNA Cutter |
Yun Shi, Fumiya Niikura, Akinori Kuzuya, and Makoto Komiyama* | |
Chem. Lett. 2004, 33 (8), 1012-1013. | |
11. | Site-Selective RNA Scission at Two Sites for Precise Genotyping of SNPs by Mass Spectrometry |
Akinori Kuzuya, Ryo Mizoguchi, Fumi Morisawa, and Makoto Komiyama* | |
Chem. Commun. 2003 (6), 770-771. | |
10. | Stereochemically Pure Acridine-Modified DNA for Site-Selective Activation and Scission of RNA |
Yun Shi, Akinori Kuzuya, and Makoto Komiyama* | |
Chem. Lett. 2003, 32 (5), 464-465. | |
9. | Conjugation of Various Acridines to DNA for Site-Selective RNA Scission by Lanthanide Ion |
Akinori Kuzuya, Kenzo Machida, Ryo Mizoguchi, and Makoto Komiyama* | |
Bioconjugate Chem. 2002, 13 (2), 365-369. | |
8. | Metal Ion-Induced Site-Selective RNA Hydrolysis by Use of Acridine-Bearing Oligonucleotide as Cofactor |
Akinori Kuzuya, Ryo Mizoguchi, Fumi Morisawa, Kenzo Machida, and Makoto Komiyama* | |
J. Am. Chem. Soc. 2002, 124 (24), 6887-6894. | |
7. | A Highly Acidic Acridine for Efficient Site-Selective Activation of RNA Leading to an Eminent Ribozyme Mimic |
Akinori Kuzuya, Kenzo Machida, and Makoto Komiyama* | |
Tetrahedron Lett. 2002, 43 (46), 8249-8252. | |
6. | New Ribozyme-Mimics Employing Mg(II) Ion as Catalytic Center |
Akinori Kuzuya, Ryo Mizoguchi, and Makoto Komiyama* | |
Chem. Lett. 2001, 30 (6), 584-585. | |
5. | Non-Covalent Ternary Systems (DNA-Acridine Hybrid / DNA / Lanthanide(III)) for Efficient and Site-Selective RNA Scission |
Akinori Kuzuya, and Makoto Komiyama* | |
Chem. Commun. 2000 (20), 2019-2020. | |
4. | Sequence-Selective RNA Scission by Non-Covalent Combination of Acridine-Tethered DNA and Lanthanide(III) Ion |
Akinori Kuzuya, and Makoto Komiyama* | |
Chem. Lett. 2000, 29 (12), 1378-1379. | |
3. | Non-Covalent Combinations of Lanthanide(III) Ion and Two DNA Oligomers for Sequence-Selective RNA Scission |
Akinori Kuzuya, Masahiro Akai, and Makoto Komiyama* | |
Chem. Lett. 1999, 28 (10), 1035-1036. | |
2. | Conjugates of a Dinuclear Zinc(II) Complex and DNA Oligomers as Novel Sequence-Selective Artificial Ribonucleases |
Shigeo Matsuda, Akira Ishikubo, Akinori Kuzuya, Morio Yashiro, and Makoto Komiyama* | |
Angew. Chem., Int. Ed. 1998, 37 (23), 3284-3286. | |
1. | Molecular Design for a Pinpoint RNA Scission. Interposition of Oligoamines between Two DNA Oligomers |
Masayuki Endo, Yasushi Azuma, Yoshiyuki Saga, Akinori Kuzuya, Gota Kawai, and Makoto Komiyama* | |
J. Org. Chem. 1997, 62 (4), 846-852. |
<会議録等>
14. | Electrochemical Biosensor Using Methylene Blue as an Electrochemical Mediator Coupling with DNA Aptamer |
Koki Yamashita, Tomohiro Shimizu, Shoso Shingubara, Hitoshi Ishida, Akinori Kuzuya, Takeshi Ito* | |
2024 IEEE SENSORS 2024, 1-4. | |
13. | AUTOMATIC RECOGNITION OF DNA NANOSTRUCTURES IN ATOMIC FORCE MICROSCOPY (AFM) IMAGE: FIRST EXPERIENCE ON DNA PLIERS |
Yuexing Han, Akito Hara, Akinori Kuzuya, Ryousuke Watanae, Yuichi Ohya, and Akihiko Konagaya | |
International Conference on Applied and Theoretical Information Systems Research (ATISR2013) 2013. | |
12. | Nanomechanical DNA Origami Devices as Versatile Molecular Sensors |
Akinori Kuzuya,* Takahiro Yamazaki, Kohei Yasuda, Yusuke Sakai, Yusei Yamanaka, Yan Xu, Yuichiro Aiba, Yuichi Ohya, and Makoto Komiyama | |
IEEE NEMS 2012 2012, 405-408. | |
11. | Restriction Enzyme Treatment/Ligation Independent Cloning Using Caged Primers for PCR |
Akinori Kuzuya,* Keita Tanaka, Hitoshi Katada, Makoto Komiyama* | |
Nucleic Acids Symp. Ser. 2009, 53, 75-76. | |
10. | Direct Preparation of Sticky-Ended Duplexes within PCR by Using Caged Primers |
Keita Tanaka, Hitoshi Katada, Narumi Shigi, Akinori Kuzuya,* and Makoto Komiyama* | |
Nucleic Acids Symp. Ser. 2008, 52, 467-468. | |
9. | Single-Molecule Accommodation of Streptavidin in Nanometer-Scale Wells Formed in DNA Nanostructures |
Akinori Kuzuya,* Kentaro Numajiri, Mayumi Kimura, and Makoto Komiyama* | |
Nucleic Acids Symp. Ser. 2008, 52, 681-682. | |
8. | A Robust DNA Framework for Single Molecule Observation with Atomic Force Microscope |
Akinori Kuzuya, and Makoto Komiyama* | |
Nucleic Acids Symp. Ser. 2007, 51, 331-332. | |
7. | Photocontrol of Site-Selective RNA Scission |
Keita Tanaka, Yoji Yamamoto, Akinori Kuzuya, and Makoto Komiyama* | |
Nucleic Acids Symp. Ser. 2007, 51, 205-206. | |
6. | Site-Selective RNA Scission by PNA-Lu(III) Hybrid System |
Yoji Yamamoto, Mayumi Kimura, Mayu Kato, Akinori Kuzuya, and Makoto Komiyama* | |
Nucleic Acids Symp. Ser. 2006, 50, 267-268. | |
5. | Simultaneous Use of Highly Acidic Acridine and Rigid Chiral Linker for Efficient Site-Selective RNA Scission |
Yun Shi, Kenzo Machida, Akinori Kuzuya, and Makoto Komiyama* | |
Nucleic Acids Symp. Ser. 2004, 48, 219-220. | |
4. | Tandem Site-Selective RNA Scission Utilizing Acridine-DNA Conjugates |
Akinori Kuzuya, Ryo Mizoguchi, Takuro Sasayama, and Makoto Komiyama* | |
Nucleic Acids Res. Supple. 2003, 3, 167-168. | |
3. | Novel Approach for SNP Genotyping Based of Site-Selective RNA Scission |
Akinori Kuzuya, Ryo Mizoguchi, Fumi Morisawa, and Makoto Komiyama* | |
Nucleic Acids Res. Supple. 2002, 2, 129-130. | |
2. | Site-Selective Artificial Ribonuclease Using Pinpoint RNA Activation |
Akinori Kuzuya, Ryo Mizoguchi, and Makoto Komiyama* | |
Nucleic Acids Res. Supple. 2001, 1, 131-132. | |
1. | Sequence-Selective RNA Scission by Oligoamine-DNA Conjugates |
Akinori Kuzuya, Yasushi Azuma, Takuya Inokawa, Koichi Yoshinari, and Makoto Komiyama* | |
Nucleic Acids Symp. Ser. 1997, 37, 209-210. |
<総説>
12. | Molecular Origami: Designing Functional Molecules of the Future |
Hitoshi Ishida,* Takeshi Ito, Akinori Kuzuya | |
Molecules 2025, 30 (2), 242. | |
11. | From Molecular Robotics to Molecular Cybernetics: The First Step Toward Chemical Artificial Intelligence |
Akinori Kuzuya,* Shin-Ichiro M. Nomura, Taro Toyota, Takashi Nakakuki, Satoshi Murata | |
IEEE Trans. Mol. Biol. Multi-Scale Commun. 2023, 9 (3), 354-363. | |
10. | Supramolecular Enzyme-mimicking Catalysts Self-assembled from Peptides |
Qing Liu,* Akinori Kuzuya, Zhen-Gang Wang* | |
iScience 2022, 26 (1), 105831. | |
9. | Molecular Cybernetics: Challenges toward Cellular Chemical AI |
Satoshi Murata,* Taro Toyota, Shin-ichiro M. Nomura, Takashi Nakakuki, Akinori Kuzuya | |
Adv. Funct. Mater. 2022, 32 (37), 2201866. | |
8. | Hydrogels Utilizing G-Quadruplexes |
Akinori Kuzuya,* and Shizuma Tanaka | |
MOJ Poly. Sci. 2017, 1 (6), 00033. | |
7. | Nanomechanical Molecular Devices Made of DNA Origami |
Akinori Kuzuya,* and Yuichi Ohya* | |
Acc. Chem. Res. 2014, 47 (6), 1742-1749. | |
6. | DNA Nanostructures as Scaffolds for Metal Nanoparticles |
Akinori Kuzuya,* and Yuichi Ohya* | |
Polymer J. 2012, 44 (6), 452-460. | |
5. | DNA Origami: Fold, Stick, and Beyond |
Akinori Kuzuya,* and Makoto Komiyama* | |
Nanoscale 2010, 2 (3), 310-322. | |
4. | Non-covalent Site-selective Artificial Ribonucleases and Their Applications |
Akinori Kuzuya, and Makoto Komiyama* | |
Curr. Org. Chem. 2007, 11 (16), 1450-1459. | |
3. | DNA, PNA, and Their Derivatives for Precise Genotyping of SNPs |
Akinori Kuzuya, J.-M. Zhou, and Makoto Komiyama* | |
Mini Rev. Org. Chem. 2004, 1 (1), 125-131. | |
2. | Site-Selective Activation of RNA Leading to Sequence-Selective RNA Cutters |
Makoto Komiyama,* Akinori Kuzuya, and Ryo Mizoguchi | |
Bull. Chem. Soc. Jpn. 2002, 75 (12), 2547-2554. | |
1. | Sequence-Selective Artificial Ribonucleases |
Makoto Komiyama,* Jun Sumaoka, Akinori Kuzuya, and Yoji Yamamoto | |
Methods Enzymol. 2001, 341, 455-468. |
<解説>
24. | 分子ロボットの「群れ」の実働に世界で初めて成功 |
角五彰、小長谷明彦、葛谷明紀 | |
自動車技術, 77 (3), 108-111, 2023年3月1日. | |
23. | メゾスケールのタンパク質分子モデリングで分子人工筋肉を解析 |
上野豊, 松田健人, 加藤薫, 角五彰, 葛谷明紀, 小長谷明彦 | |
生物物理, 62 (1), 58-61, 2022年1月27日. | |
22. | Molecular Swarm Robot Realized by the Intelligence of a Biomolecular Motor System and DNA |
Jakia Jannat Keya, Akinori Kuzuya, Akira Kakugo | |
生物物理, 61 (5), 330-331, 2021年9月28日. | |
21. | 大学の枠を越えたオンライン生体分子デザインコンペティションの取り組み |
村田智, 葛谷明紀, 藤原慶, 平順一, 川又生吹, 佐藤佑介, 瀧ノ上正浩, 野村 M.慎一郎, 角五彰, 堀豊, 安部桂太 | |
工学教育, 69 (4), 31-39, 2021年8月1日. | |
20. | 動物実験でも使用されはじめたDNAオリガミ法 |
葛谷明紀 | |
LABIO21, 83, 17-21, 2021年5月1日. | |
19. | 「動く」DNAオリガミ |
葛谷明紀 | |
現代化学, 597, 42-45, 2020年11月18日. | |
18. | 核酸とPEGの複合体を利用したDDS |
葛谷明紀 | |
バイオマテリアル—生体材料—, 38 (4), 248-253, 2020年10月15日. | |
17. | 生体分子モーターとDNAオリガミによる分子人工筋肉の開発 |
松田健人, アリフ ムハンマド ラセドゥル コビル, 佐田和己, 葛谷明紀, 角五彰 | |
バイオインダストリー, 37 (2), 45-53, 2020年2月12日. | |
16. | DNAオリガミ構造体による分子人工筋肉の開発とその展望 |
松田健人, Arif Md. Rashedul Kabir, 佐田和己, 葛谷明紀, 角五彰 | |
機能材料, 39 (11), 47-53, 2019年11月5日. | |
15. | 動く!DNAオリガミ分子機械 |
葛谷明紀 | |
高分子, 67 (6), 330-331, 2018年6月1日. | |
14. | 群れのように振る舞う分子ロボットの開発──化学・工学の力でSFの世界を目指す |
葛谷明紀, Jakia Jannat Keya, 角五彰 | |
化学, 73 (6), 39-42, 2018年5月18日. | |
13. | 単分子検出デバイスとしてのナノメカニカルDNAオリガミデバイス |
葛谷明紀 | |
日本核酸化学会誌, 1, 8-12, 2017年11月. | |
12. | DNAオリガミ構造体を活用した生体関連分子の単分子操作法 |
葛谷明紀 | |
野口研究所時報, 60, 34-42, 2017年9月30日. | |
11. | “切り紙”の新たな科学的意義(翻訳) |
葛谷明紀 | |
パリティ, 32 (8), 35-36, 2017年7月25日. | |
10. | DNAでつくったナノシート |
葛谷明紀 | |
ケミカルエンジニヤリング, 61 (11), 40-45, 2016年11月. | |
9. | DNAオリガミの基礎 |
葛谷明紀 | |
現代化学, 543, 42-46, 2016年6月. | |
8. | DNAオリガミで作る単分子機能デバイス |
葛谷明紀 | |
高分子, 64 (2), 99-100, 2015年2月. | |
7. | DNAでできた”メタマテリアル”(「2014年の化学 注目の論文」) |
葛谷明紀 | |
化学, 69 (3), 61-62, 2014年3月. | |
6. | 核酸細工で「見える」分子デバイスを組み立てる |
葛谷明紀 | |
化学工業, 63 (6), 24-28, 2012年6月1日. | |
5. | DNAオリガミ |
葛谷明紀 | |
日本ロボット学会誌, 28 (10), 1155-1157, 2010年12月. | |
4. | 3種類のDNAでサッカーボールをつくる(「2009年の化学 注目の論文」) |
葛谷明紀 | |
化学, 64 (3), 62-63, 2009年3月. | |
3. | 位置選択的RNAカッターの開発と遺伝子診断への応用 |
葛谷明紀 | |
化学と工業「化学のフロンティア2006」, 日本化学会, Vol. 59, p144-147, 2006年2月. | |
2. | 化学の力でRNAを望みの位置で切断する |
葛谷明紀, 小宮山眞 | |
化学と教育, Vol. 50, p576-577, 2002年8月20日. | |
1. | 人工酵素によるRNAの切断とその応用 |
葛谷明紀, 小宮山眞 | |
化学工業, 50 (3), 197-203, 1999年3月. |
<著書>
16. | 生命起源の事典 |
生命の起原および進化学会監修(分担執筆), 朝倉書店, 2024年4月5日. | |
15. | Molecular Material for Molecular Robots |
Akinori Kuzuya | |
in Molecular Robotics, An Introduction, Satoshi Murata, Ed., pp 215-245, 2022, Springer, Singapore. | |
14. | DNA Origami for Molecular Robotics |
Akinori Kuzuya | |
in DNA Origami: Structures, Technology, and Applications, Masayuki Endo, Ed., pp 297-304, 2022, Wiley-VCH, Weinheim. | |
13. | 核酸科学ハンドブック |
日本核酸化学会監修(分担執筆), 杉本直己編, 講談社サイエンティフィク, 2020年12月22日. | |
12. | 生体分子モーターの能動的自己組織化を利用した分子人工筋肉の開発 |
松田健人, Arif Md. Rashedul Kabir, 佐田和己, 葛谷明紀, 角五彰 | |
「自己修復材料、自己組織化、形状記憶材料の開発と応用事例」, 第5章第7節, pp.323-328, 技術情報協会, 2020年3月31日. | |
11. | 基礎高分子科学 第2版 |
高分子学会編(分担執筆), 東京化学同人, 2020年1月28日. | |
10. | 分子ロボティクス概論 ~分子のデザインでシステムをつくる〜 |
分子ロボティクス研究会著(分担執筆), 村田智編, 情報計算化学生物学会 (CBI 学会) 出版, 2019年5月2日. | |
9. | Manipulation of Molecular Architecture with DNA |
Akinori Kuzuya | |
in Molecular Technology: Life Innovation, Hisashi Yamamoto & Takashi Kato, Ed., pp 25-42, 2018, Wiley-VCH, Weinheim. | |
8. | DNA分子デザインのすべて〜BIOMOD虎の巻〜 |
分子ロボティクス研究会編(分担執筆), eBook Series No. 2, 情報計算化学生物学会 (CBI 学会) 出版, 2016年4月15日. | |
7. | DNA折り紙によるナノシステムの構築 |
葛谷明紀 | |
「自己組織化マテリアルのフロンティア」, 中西尚志他編,第1章第4節, pp.30-38, フロンティア出版, 2015年12月22日. | |
6. | 「DNA分子デバイス」の開発と分子ロボットへの応用 |
葛谷明紀 | |
「パワーアシスト・ロボットに関する材料,電子機器,制御と実用化,その最新技術」, 第4章第6節, pp.297-306, 技術情報協会, 2015年4月10日. | |
5. | DNAナノテクノロジー |
葛谷明紀, 小宮山眞 | |
CSJカレントレビュー06「核酸化学のニュートレンド」, 佐々木茂貴, 杉本直己, 中谷和彦編, 化学同人, 2011年7月. | |
4. | 希土類イオンによるRNA, DNAの切断 |
葛谷明紀, 小宮山真 | |
「希土類の材料技術」 第5部38章1節, 足立吟也編, 株式会社エヌ・ティー・エス, 2008年5月. | |
3. | Sequence Selective Artificial Ribonucleases Employing Metal Ions as Scissors |
Akinori Kuzuya, Ryo Mizoguchi, and Makoto Komiyama* | |
in Artificial Ribonucleases, Marina A. Zenkova, Ed., Nucleic Acids and Molecular Biology 13, pp 173-188, 2004, Springer-Verlag GmbH, Berlin. | |
2. | 遺伝子切断 |
須磨岡淳, 葛谷明紀, 小宮山眞 | |
「生命化学のニューセントラルドグマ」第I部第4章, 杉本直己編, 化学フロンティア5, 化学同人, 2002年2月1日. | |
1. | 人工制限酵素 |
小宮山眞, 須磨岡淳, 葛谷明紀 | |
「バイオミメティックスハンドブック」 機能応用編第1章第6節, 長田義仁編, 株式会社エヌ・ティー・エス, 2000年9月. |
<特許>
11. | 特願2023-198727 (2023年11月23日出願), 特許第7583475号(2024年11月6日登録) |
「超解像処理方法、超解像処理装置およびプログラム」 | |
発明者: 小長谷明彦, 葛谷明紀 | |
出願人: 株式会社分子ロボット総合研究所 | |
10. | 特願2023-131184 (2023年8月10日出願) |
「エネルギー伝送路として利用可能な複合物質」 | |
発明者: 葛谷明紀, 南出悠貴 | |
出願人: 関西大学 | |
9. | 特願2022-079640 (2022年5月13日出願) |
「アミダイトモノマー」 | |
発明者: 葛谷明紀, 栗本寛也 | |
出願人: 関西大学 | |
8. | 特願2021-132865 (2021年8月17日出願) |
「複合分子」 | |
発明者: 葛谷明紀, 高野史章, 乾俊輝 | |
出願人: 関西大学 | |
7. | 特願2020-132829 (2020年8月5日出願), 特願2022-541500 (2021年7月30日出願), 特許第7336781号(2023年8月30日登録) |
「核酸構造体」 | |
発明者: 葛谷明紀, 高橋望, 岡本祐太, 河野幸子, 加藤千尋, 齋藤敬太 | |
出願人: Cranebio株式会社, 関西大学 | |
6. | 特願2018-107494 (2018年6月5日出願), 特許第7126687号 (2022年8月19日登録) |
「微小管含有集合体形成方法および微小管含有集合体形成キット」 | |
発明者: 葛谷明紀 | |
出願人: 関西大学 | |
5. | 特願2015-071184 (2015年3月31日出願), 特許第6562410号 (2019年8月2日登録) |
「癒着防止材及びその製造方法」 | |
発明者: 吉田泰之, 向井智和, 大矢裕一, 川原佳祐, 葛谷明紀, 高橋明裕 | |
出願人: 関西大学, 川澄化学工業 | |
4. | 特願2015-071185 (2015年3月31日出願), 特許第6522391号 (2019年5月10日登録) |
「温度応答性を有する生分解性ポリマー組成物及びその製造方法」 | |
発明者: 大矢裕一, 吉田泰之, 川原佳祐, 高橋明裕, 葛谷明紀 | |
出願人: 関西大学 | |
3. | 特願2015-166211 (2015年2月25日出願), 特願2015-035486 (2015年8月25日出願), 特許第6584868号 (2019年9月13日登録) |
「ゲル素材及びその製造方法」 | |
発明者: 葛谷明紀, 大矢裕一 | |
出願人: 関西大学 | |
2. | 特願2008-061678 (2008年3月11日), 特願2010-502911, 特許第5397960号 (2013年11月1日登録) |
「粘着末端を有するDNA断片の調製方法」 | |
発明者: 小宮山眞, 葛谷明紀, 田中啓太 | |
出願人: 東京大学 | |
1. | 特願2001-567316 (2001年3月1日) |
「一本鎖RNAの切断方法およびキット」 | |
発明者: 小宮山眞, 葛谷明紀 | |
出願人: 東京大学 |