<Original Papers>
99. | Nonequilibrium Self‐Assembly of Microtubules Through Stepwise Sequential Interactions of DNA |
Jakia Jannat Keya, Mousumi Akter, Yuta Yamasaki, Yoshiyuki Kageyama, Kazuki Sada, Akinori Kuzuya,* Akira Kakugo* | |
Small 2024, 2408364. | 98. | DNA Origami-Constructed Nanotapes for Sunitinib Adsorption and Inhibition of Renal Clear Carcinoma Cells |
Lin Li, Xuxiang Yao, Pengyao Wei, Dongdong He, Qiaojiao Ding, Bing Bai, Xiuyi Lv, Akinori Kuzuya, Yuling Wang, Kerong Wu,* Kaizhe Wang,* Jianping Zheng* | |
ACS Omega 2024, 9 (31), 33765–33772. | |
97. | Sustained-Release of Antigens and CpG-DNA using Temperature-Responsive Biodegradable Injectable Polymers: Performance on Induction of Immune Responses |
Yuta Yoshizaki,* Kenta Horii, Nobuo Murase, Akinori Kuzuya, and Yuichi Ohya* | |
Adv. Ther. 2024, 7 (8), 2300296. | |
96. | Gelation upon the Mixing of Amphiphilic Graft and Triblock Copolymers Containing Enantiomeric Polylactide Segments through Stereocomplex Formation |
Yuichi Ohya*, Yasuyuki Yoshida, Taiki Kumagae, and Akinori Kuzuya | |
Gels 2024, 10 (2), 139. | |
95. | Synthesis of Topological Gels by Penetrating Polymerization Using a Molecular Net |
Yuichi Ohya*, Ryota Dohi, Fumika Seko, Yuto Nakazawa, Ken-ichiro Mizuguchi, Kosei Shinzaki, Takahiko Yasui, Hiroaki Ogawa, Shizuka Kato, Yuta Yoshizaki, Nobuo Murase, and Akinori Kuzuya | |
Angew. Chem. Int. Ed. 2024, 63 (11), e202317045. | |
94. | Development of immune cell delivery system using biodegradable injectable polymers for cancer immunotherapy |
Yuta Yoshizaki,* Kenta Horii, Nobuo Murase, Akinori Kuzuya, and Yuichi Ohya* | |
Int. J. Pharm. 2024, 652, 123801. | |
93. | Drug Delivery with Hyaluronic Acid-Coated Polymeric Micelles in Liver Fibrosis Therapy |
Yuta Yoshizaki, Manami Yamasaki, Takuya Nagata, Kengo Suzuki, Rio Yamada, Takuma Kato, Nobuo Murase, Akinori Kuzuya, Akira Asai, Kazuhide Higuchi, Kosuke Kaji, Hitoshi Yoshiji, and Yuichi Ohya* | |
ACS Biomater. Sci. Eng. 2023, 9 (6), 3414–3424. | |
92. | A systematic study on the effects of the structure of block copolymers of PEG and poly(ε-caprolactone-co-glycolic acid) on their temperature-responsive sol-to-gel transition behavior |
Yuichi Ohya,* Hidenori Yonezawa, Chiro Moriwaki, Nobuo Murase, and Akinori Kuzuya | |
Polym. Chem. 2023, 14 (12), 1350–1358. | |
91. | Loss of multipotency in adipose-derived stem cells after culture in temperature-responsive injectable polymer hydrogels |
Nozomi Mayumi, Nobuo Murase, Yuta Yoshizaki, Akinori Kuzuya, and Yuichi Ohya* | |
Polym. J. 2023, 55 (3), 261–271. | |
90. | Synthesis of degradable double network gels using a hydrolysable cross-linker |
Takanori Yokoi, Akinori Kuzuya, Tasuku Nakajima, Takayuki Kurokawa, Jian Ping Gong, and Yuichi Ohya* | |
Polym. Chem. 2022, 13 (25), 3756–3762. | |
89. | Cooperative cargo transportation by a swarm of molecular machines |
Mousumi Akter, Jakia Jannat Keya, Kentaro Kayano, Arif Md. Rashedul Kabir, Daisuke Inoue, Henry Hess, Kazuki Sada, Akinori Kuzuya, Hiroyuki Asanuma, and Akira Kakugo* | |
Science Robot. 2022, 7 (65), eabm0677. | |
88. | Preparation of hyaluronic acid-coated polymeric micelles for nasal vaccine delivery |
Keigo Suzuki, Yuta Yoshizaki, Kenta Horii, Nobuo Murase, Akinori Kuzuya, and Yuichi Ohya* | |
Biomater. Sci. 2022, 10 (8), 1920–1928. | |
87. | Reactive-Oxygen-Species-Mediated Surface Oxidation of Single-Molecule DNA Origami by an Atomic Force Microscope Tip-Mounted C60 Photocatalyst |
Ankita Ray, Cristiana Passiu, Masayuki Nasuda, Shivaprakash N. Ramakrishna, Antonella Rossi, Akinori Kuzuya, Nicholas D. Spencer, and Yoko Yamakoshi* | |
ACS Nano 2021, 15 (12), 19256–19265. | |
86. | Temperature-Responsive Biodegradable Injectable Polymers with Tissue Adhesive Properties |
Soichiro Fujiwara, Yuta Yoshizaki, Akinori Kuzuya, and Yuichi Ohya* | |
Acta Biomaterialia 2021, 135, 318-330. | |
85. | Cellular therapy for myocardial ischemia using a temperature-responsive biodegradable injectable polymer system with adipose-derived stem cells |
Yuta Yoshizaki, Hiroki Takai, Nozomi Mayumi, Soichiro Fujiwara, Akinori Kuzuya, and Yuichi Ohya* | |
Sci. Technol. Adv. Mater. 2021, 22 (1), 627-642. | |
84. | Postoperative Adhesion Prevention Using a Biodegradable Temperature-Responsive Injectable Polymer System and Concomitant Effects of the Chymase Inhibitor |
Yuta Yoshizaki, Takuya Nagata, Soichiro Fujiwara, Shinji Takai, Denan Jin, Akinori Kuzuya, and Yuichi Ohya* | |
ACS Appl. Bio Mater. 2021, 4 (4), 3079-3088. | |
83. | Modeling a Microtubule Filaments Mesh Structure from Confocal Microscopy Imaging |
Yutaka Ueno,* Kento Matsuda, Kaoru Katoh, Akinori Kuzuya, Akira Kakugo, and Akihiko Konagaya | |
Micromachines 2020, 11 (9), 844. | |
82. | An intermolecular-split G-quadruplex DNAzyme sensor for dengue virus detection |
Jeunice Ida, Akinori Kuzuya, Yee Siew Choong, and Theam Soon Lim* | |
RSC Adv. 2020, 10 (55), 33040-33051. | |
81. | Single-molecule AFM study of DNA damage by 1O2 generated from photoexcited C60 |
Ankita Ray, Korinne Liosi, Shivaprakash N. Ramakrishna, Nicholas D. Spencer, Akinori Kuzuya,* and Yoko Yamakoshi* | |
J. Phys. Chem. Lett. 2020, 11 (18), 7819-7826. | |
80. | Versatile cell-specific ligand arrangement system onto desired compartments of biodegradable matrices for site-selective cell adhesion using DNA tags |
Hiromichi Sumida, Yuta Yoshizaki, Akinori Kuzuya, and Yuichi Ohya* | |
Biomacromolecules, 2020, 21 (9), 3713-3723. | |
79. | Reversible Changes in the Orientation of Gold Nanorod Arrays on Polymer Brushes |
Yu Sekizawa, Hideyuki Mitomo,* Mizuki Nihei, Satoshi Nakamura, Yusuke Yonamine, Akinori Kuzuya, Takehiko Wada, and Kuniharu Ijiro* | |
Nanoscale Adv. 2020, 2 (9), 3798-3803. | |
78. | Sustained Drug-Releasing Systems Using Temperature-Responsive Injectable Polymers Containing Liposomes |
Yuta Yoshizaki, Hiroki Yamamoto, Akinori Kuzuya, and Yuichi Ohya* | |
ACS Symp. Ser. 2020, 1350, 35-45. | |
77. | Cellular Attachment Behavior on Biodegradable Polymer Surface Immobilizing Endothelial Cell-Specific Peptide |
Yuichi Ohya,* Kazuki Nishimura, Hiromichi Sumida, Yuta Yoshizaki, Akinori Kuzuya, Atsushi Mahara, and Tetsuji Yamaoka* | |
J. Biomater. Sci., Polym. Ed., 2020, 31 (11), 1475-1488. | |
76. | Thermal properties and degradation of enantiomeric copolyesteramides poly(lactic acid-co-alanine)s |
Hideto Tsuji,* Shotaro Sato, Noriaki Masaki, Yuki Arakawa, Yuta Yoshizaki, Akinori Kuzuya, and Yuichi Ohya* | |
Polym. Degrad. Stab. 2020, 171, 109047. | |
75. | Stereocomplex crystallization, homocrystallization, and polymorphism of enantiomeric copolyesteramides poly(lactic acid‐co‐alanine)s from the melt |
Hideto Tsuji,* Shotaro Sato, Noriaki Masaki, Yuki Arakawa, Yuta Yoshizaki, Akinori Kuzuya, and Yuichi Ohya* | |
Polym. Crystallization 2020, 3 (2), e10094. | |
74. | Artificial Smooth Muscle Model Composed of Hierarchically Ordered Microtubule Asters Mediated by DNA Origami Nanostructures |
Kento Matsuda, Arif Md. Rashedul Kabir, Naohide Akamatsu, Ai Saito, Shumpei Ishikawa, Tsuyoshi Matsuyama, Oliver Ditzer, Md. Sirajul Islam, Yuichi Ohya, Kazuki Sada, Akihiko Konagaya, Akinori Kuzuya,* and Akira Kakugo* | |
Nano Lett. 2019, 19 (6), 3933-3938. | |
Featured on 日刊工業新聞, 日経産業新聞 | |
73. | Application of DNA Quadruplex Hydrogels Prepared from Polyethylene Glycol-Oligodeoxynucleotide Conjugates to Cell Culture Media |
Shizuma Tanaka, Shinsuke Yukami, Yuhei Hachiro, Yuichi Ohya,* and Akinori Kuzuya* | |
Polymers 2019, 11 (10), 1607. | |
72. | DNA Quadruplex Hydrogel Beads Showing Peroxidase Activity |
Shizuma Tanaka, Soo Khim Chan, Theam Soon Lim, Yuichi Ohya, and Akinori Kuzuya* | |
J. Electrochem. Soc. 2019, 166 (9), B3271-B3273. | |
71. | DNA Switch: Toehold-Mediated DNA Isothermal Amplification for Dengue Serotyping |
Soo Khim Chan, Akinori Kuzuya, Yee Siew Choong, and Theam Soon Lim* | |
SLAS Discov., 2019, 24 (1), 68–76. | |
70. | Bulk pH Responsive DNA Quadruplex Hydrogels Prepared by Liquid-Phase, Large-Scale DNA Synthesis |
Shizuma Tanaka, Shinsuke Yukami, Kazuki Fukushima, Kenta Wakabayashi, Yuichi Ohya,* and Akinori Kuzuya* | |
ACS Macro Lett. 2018, 7 (3), 295-299. | |
69. | DNA-assisted swarm control in a biomolecular motor system |
Jakia Jannat Keya, Ryuhei Suzuki, Arif Md. Rashedul Kabir, Daisuke Inoue, Hiroyuki Asanuma, Kazuki Sada, Henry Hess, Akinori Kuzuya,* and Akira Kakugo* | |
Nature Commun. 2018, 9, 453. | |
Featured on 日刊工業新聞, 日経産業新聞, Chemistry World | |
68. | Control of swarming of molecular robots |
Jakia Jannat Keya, Arif Md. Rashedul Kabir, Daisuke Inoue, Kazuki Sada, Henry Hess, Akinori Kuzuya,* and Akira Kakugo* | |
Sci. Rep. 2018, 8, 11756. | |
67. | Synthesis, stereocomplex crystallization and homo-crystallization of enantiomeric poly(lactic acid-co-alanine)s with ester and amide linkages |
Hideto Tsuji,* Shotaro Sato, Noriaki Masaki, Yuki Arakawa, Akinori Kuzuya, and Yuichi Ohya* | |
Polym. Chem., 2018, 9 (5), 565-575. | |
66. | Preparation of Biodegradable Oligo(lactide)s-Grafted Dextran Nanogels for Efficient Drug Delivery by Controlling Intracellular Traffic |
Yuichi Ohya,* Akihiro Takahashi, and Akinori Kuzuya | |
Int. J. Mol. Sci., 2018, 16 (6), 1606. | |
65. | Intelligent, biodegradable, and self-healing hydrogels utilizing DNA quadruplexes |
Shizuma Tanaka, Kenta Wakabayashi, Kazuki Fukushima, Shinsuke Yukami, Ryuki Maezawa, Yuhei Takeda, Kohei Tatsumi, Yuichi Ohya,* and Akinori Kuzuya* | |
Chem. Asian J. 2017, 12 (18), 2388-2392. | |
64. | Allosteric Control of Nanomechanical DNA Origami Pinching Devices for Enhanced Target Binding |
Akinori Kuzuya,* Yusuke Sakai, Takahiro Yamazaki, Yan Xu, Yusei Yamanaka, Yuichi Ohya, and Makoto Komiyama* | |
Chem. Commun. 2017, 53 (59), 8276-8279. | |
63. | Site-Selective RNA Activation by Acridine-Modified Oligodeoxynucleotides: A Comprehensive Study |
Akinori Kuzuya,* Yun Shi, Keita Tanaka, Kenzo Machida, and Makoto Komiyama* | |
ACS Omega 2017, 2 (9), 5370-5377. | |
62. | “DNA origami traffic lights” with split aptamer sensor for bicolor fluorescence readout |
Heidi-Kristin Walter, Jens Bauer, Jeannine Steinmeyer, Akinori Kuzuya, Christof M. Niemeyer, and Hans-Achim Wagenknecht* | |
Nano Lett. 2017, 17 (4), 2467-2472. | |
61. | Peptide drug release behavior from biodegradable temperature-responsive injectable hydrogels exhibiting irreversible gelation |
Kazuyuki Takata, Hiroki Takai, Yuta Yoshizaki, Takuya Nagata, Keisuke Kawahara, Yasuyuki Yoshida, Akinori Kuzuya, and Yuichi Ohya* | |
Gels 2017, 3 (4), 38. | |
60. | Analysis of the sol-to-gel transition behavior of temperature-responsive injectable polymer systems by fluorescence resonance energy transfer |
Kazuyuki Takata, Keisuke Kawahara, Yasuyuki Yoshida, Akinori Kuzuya, and Yuichi Ohya* | |
Polym. J. 2017, 49 (9), 677-684. | |
59. | Extemporaneously preparative biodegradable injectable polymer systems exhibiting temperature-responsive irreversible gelation |
Yasuyuki Yoshida, Kazuyuki Takata, Hiroki Takai, Keisuke Kawahara, Akinori Kuzuya, and Yuichi Ohya* | |
J. Biomat. Sci. Polym. Ed. 2017, 28 (14), 1427-1443. | |
58. | Injectable and biodegradable temperature-responsive mixed polymer systems providing variable gel-forming pH regions |
Yasuyuki Yoshida, Keisuke Kawahara, Akinori Kuzuya, and Yuichi Ohya* | |
J. Biomat. Sci. Polym. Ed. 2017, 28 (10-12), 1158-1171. | |
57. | Biodegradable injectable polymer systems exhibiting longer and controllable duration time of the gel state |
Yasuyuki Yoshida, Hiroki Takai, Keisuke Kawahara, Kazuyuki Takata, Shintaro Mitsumune, Akinori Kuzuya, and Yuichi Ohya* | |
Biomater. Sci. 2017, 5 (7), 1304-1314. | |
56. | Biodegradable Injectable Polymer Systems Exhibiting Temperature-Responsive Irreversible Sol-to-Gel Transition by Covalent Bond Formation |
Yasuyuki Yoshida, Keisuke Kawahara, Kenta Inamoto, Shintaro Mitsumune, Shinya Ichikawa, Akinori Kuzuya, and Yuichi Ohya* | |
ACS Biomater. Sci. Eng. 2017, 3 (1), 56-67. | |
55. | Synthesis and Temperature-responsiveness of Poly(ethylene glycol)-like Biodegradable Poly(ether-ester)s |
Yuichi Ohya,* Akihiro Takahashi, Hiroki Takaishi, Akinori Kuzuya | |
ACS Symp. Ser. 2017, 1253, 93-104. | |
54. | A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly |
Maia Godonoga, Ting-Yu Lin, Azusa Oshima, Koji Sumitomo, Marco S. L. Tang, Yee-Wai Cheung, Andrew B. Kinghorn, Roderick M. Dirkzwager, Cunshan Zhou, Akinori Kuzuya, Julian A. Tanner, and Jonathan G. Heddle* | |
Sci. Rep. 2016, 6, 21266. | |
53. | Stereocomplex- and homo-crystallization of blends from 2-armed poly(l-lactide) and poly(d-lactide) with identical and opposite chain directional architectures and of 2-armed stereo diblock poly(lactide) |
Hideto Tsuji,* Kentaro Tamai, Takayuki Kimura, Akiyo Kubota, Akihiro Takahashi, Akinori Kuzuya, Yuichi Ohya* | |
Polymer 2016, 96, 167-181. | |
52. | Crosslinked duplex DNA nanogels that target specified proteins |
Yasuhiko Iwasaki,* Jun-ichi Kondo, Akinori Kuzuya, Rui Moriyama | |
Sci. Tech. Adv. Mater. 2016, 17 (1), 285-292. | |
51. | Automatic Recognition of DNA Pliers in Atomic Force Microscopy Images |
Yuexing Han,* Akito Hara, Akinori Kuzuya, Ryosuke Watanabe, Yuichi Ohya, and Akihiko Konagaya | |
New Gener. Comput. 2015, 33 (3), 253-270. | |
50. | Encapsulation of a Gold Nanoparticle in a DNA Origami Container |
Akinori Kuzuya,* Masafumi Kaino, Mirai Hashizume, Kazuki Matsumoto, Takeaki Uehara, Yasutaka Matsuo, Hideyuki Mitomo, Kenichi Niikura, Kuniharu Ijiro, and Yuichi Ohya* | |
Polym. J. 2015, 47 (2), 177-182. | |
49. | Orthogonal Enzyme Arrays on a DNA Origami Scaffold Bearing Size-Tunable Wells |
Takahiro Yamazaki, Jonathan Gardiner Heddle, Akinori Kuzuya,* and Makoto Komiyama* | |
Nanoscale 2014, 6 (15), 9122-9126. | |
48. | Nanomechanical DNA Origami pH Sensors |
Akinori Kuzuya,* Ryosuke Watanabe, Yusei Yamanaka, Takuya Tamaki, Masafumi Kaino, and Yuichi Ohya* | |
Sensors 2014, 14 (10), 19329-19335. | |
47. | Precise Structure Control of Three-State Nanomechanical DNA Origami Devices |
Akinori Kuzuya,* Ryosuke Watanabe, Mirai Hashizume, Masafumi Kaino, Shinya Minamida, Koji Kameda, and Yuichi Ohya* | |
Methods 2014, 67 (2), 250-255. | |
46. | Instant preparation of a biodegradable injectable polymer formulation exhibiting a temperature-responsive sol-gel transition |
Yasuyuki Yoshida, Akihiro Takahashi, Akinori Kuzuya, Yuichi Ohya* | |
Polym. J. 2014, 46 (9), 632-635. | |
45. | A Macromolecular Prodrug-type Injectable Polymer Composed of Poly(depsipeptide-co-lactide)-g-PEG for Sustained Release of Drugs |
Akihiro Takahashi, Masaya Umezaki, Yasuyuki Yoshida, Akinori Kuzuya, Yuichi Ohya* | |
Polym. Adv. Technol. 2014, 25 (11), 1226-1233. | |
44. | Impact of Core-Forming Segment Structure on Drug Loading in Biodegradable Polymeric Micelles Using PEG-b-Poly(lactide-co-depsipeptide) Block Copolymers |
Akihiro Takahashi, Yuta Ozaki, Akinori Kuzuya, Yuichi Ohya* | |
Biomed Res. Int. 2014, 579212. | |
43. | The Effects of Molecular Structure on Sol-to-gel Transition of Biodegradable Poly(depsipeptide-co-lactide)-g-PEG Copolymers |
Akihiro Takahashi, Masaya Umezaki, Yasuyuki Yoshida, Akinori Kuzuya, and Yuichi Ohya* | |
J. Biomat. Sci. Polym. Ed. 2014, 25 (5), 444-454. | |
42. | Design of Biodegradable Injectable Polymers Exhibiting Temperature-Responsive Sol-Gel Transition |
Yuichi Ohya, Hiroyuki Suzuki, Koji Nagahama, Akihiro Takahashi, Tatsuro Ouchi, Akinori Kuzuya | |
Adv. Sci. Technol. 2013, 86, 9-16. | |
41. | Clear-Cut Observation of PNA Invasion Using Nanomechanical DNA Origami Devices |
Takahiro Yamazaki, Yuichiro Aiba, Kohei Yasuda, Yusuke Sakai, Yusei Yamanaka, Akinori Kuzuya,* Yuichi Ohya, and Makoto Komiyama* | |
Chem. Commun. 2012, 48 (92), 11361-11363. | |
40. | Enzyme Treatment-Free and Ligation-Independent Cloning Using Caged Primers in Polymerase Chain Reactions |
Akinori Kuzuya,* Keita Tanaka, Hitoshi Katada, Makoto Komiyama* | |
Molecules 2012, 17 (1), 328-340. | |
39. | Formation of 1D and 2D Gold Nanoparticle Arrays by Divalent DNA-Gold Nanoparticle Conjugates |
Yuichi Ohya,* Nozomi Miyoshi, Mirai Hashizume, Takuya Tamaki, Takeaki Uehara, Shoso Shingubara, Akinori Kuzuya | |
Small 2012, 8 (15), 2335-2340. | |
38. | Nanomechanical DNA Origami ‘Single-Molecule Beacons’ Directly Imaged by Atomic Force Microscopy |
Akinori Kuzuya,* Yusuke Sakai, Takahiro Yamazaki, Yan Xu, and Makoto Komiyama* | |
Nature Commun. 2011, 2, 449. | |
Featured on Kakenhi NEWS Letter | |
37. | Photo-Switching of Site-Selective RNA Scission by Sequential Incorporation of Azobenzene and Acridine Residues in a DNA Oligomer |
Akinori Kuzuya, Keita Tanaka, Makoto Komiyama* | |
J. Nucleic Acids 2011, 2011, 162452. | |
36. | Programmed Nanopatterning of Organic/Inorganic Nanoparticles Using Nanometer-Scale Wells Embedded in a DNA Origami Scaffold |
Akinori Kuzuya,* Naohiro Koshi, Mayumi Kimura, Kentaro Numajiri, Takahiro Yamazaki, Toshiyuki Ohnishi, Fuminori Okada, Makoto Komiyama* | |
Small 2010, 6 (23), 2664-2667. | |
35. | Discrete and Active Enzyme Nanoarrays on DNA Origami Scaffolds Purified by Affinity Tag Separation |
Kentaro Numajiri, Takahiro Yamazaki, Mayumi Kimura, Akinori Kuzuya,* Makoto Komiyama* | |
J. Am. Chem. Soc. 2010, 132 (29), 9937-9939. | |
34. | Stepwise and Reversible Nanopatterning of Proteins on a DNA Origami Scaffold |
Kentaro Numajiri, Mayumi Kimura, Akinori Kuzuya,* Makoto Komiyama* | |
Chem. Commun. 2010, 46 (28), 5127-5129. | |
33. | Blunt-Ended DNA Stacking Interactions in a 3-Helix Motif |
Risheng Wang, Akinori Kuzuya, Wenyan Liu, and Nadrian C. Seeman* | |
Chem. Commun. 2010, 46 (27), 4905-4907. | |
32. | Asymmetric Secondary and Tertiary Streptavidin/DNA Complexes Selectively Formed in a Nanometer-Scale DNA Well |
Kentaro Numajiri, Akinori Kuzuya,* Makoto Komiyama* | |
Bioconjugate Chem. 2010, 21 (2), 338-344. | |
31. | Dethreading of Deoxyribonucleotides through α-Cyclodextrin |
Akinori Kuzuya,* Toshiyuki Ohnishi, Takahiro Yamazaki, Makoto Komiyama* | |
Chem. Asian J. 2010, 5 (10), 2177-2180. | |
30. | Precisely Programmed and Robust 2D Streptavidin Nanoarrays by Using Periodical Nanometer-Scale Wells Embedded in DNA Origami Assembly |
Akinori Kuzuya,* Mayumi Kimura, Kentaro Numajiri, Naohiro Koshi, Toshiyuki Ohnishi, Fuminori Okada, Makoto Komiyama* | |
ChemBioChem 2009, 10 (11), 1811-1815. | |
29. | Efficient Guest Inclusion by β-Cyclodextrin Attached to the Ends of DNA Oligomers upon Hybridization to Various DNA Conjugates |
Akinori Kuzuya,* Toshiyuki Ohnishi, Tsugutoshi Wasano, Suguru Nagaoka, Jun Sumaoka, Toshihiro Ihara,* Akinori Jyo, Makoto Komiyama* | |
Bioconjugate Chem. 2009, 20 (8), 1643-1649. | |
28. | Precise Site-Selective Termination of DNA Replication by Caging The 3-Position of Thymidine and Its Application to Polymerase Chain Reaction |
Akinori Kuzuya,* Fuminori Okada, Makoto Komiyama* | |
Bioconjugate Chem. 2009, 20 (10), 1924-1929. | |
27. | Design and Construction of a Box-Shaped 3D-DNA Origami |
Akinori Kuzuya,* and Makoto Komiyama* | |
Chem. Commun. 2009 (28), 4182-4184. | |
Selected as a Hot Article, and featured on Highlights in Chemical Science | |
26. | Efficient Site-selective RNA Activation and Scission Achieved by Geometry Control of Acridine Intercalation in RNA/DNA Heteroduplex |
Akinori Kuzuya, Yun Shi, Keita Tanaka, Kenzo Machida, Makoto Komiyama* | |
Chem. Lett. 2009, 38 (5), 432-433. | |
25. | DNA/α-Cyclodextrin-Rotaxane Conjugate as a New Supramolecular Material |
Akinori Kuzuya,* Toshiyuki Ohnishi, Makoto Komiyama* | |
Chem. Lett. 2008, 37 (9), 996-997. | |
24. | Synthesis of Photo-Responsive Acridine-Modified DNA and Its Application to Site-Selective RNA Scission |
Keita Tanaka, Yoji Yamamoto, Akinori Kuzuya, and Makoto Komiyama* | |
Nucleosides, Nucleotides Nucleic Acids 2008, 27 (10-11), 1175-1185. | |
23. | Site-Selective Blocking of PCR by a Caged Nucleotide Leading to Direct Creation of Desired Sticky Ends in The Products |
Keita Tanaka, Hitoshi Katada, Narumi Shigi, Akinori Kuzuya,* and Makoto Komiyama* | |
ChemBioChem 2008, 9 (13), 2120-2126. | |
22. | Site-Selective Termination of DNA Replication by Using a Caged Template |
Keita Tanaka, Akinori Kuzuya,* and Makoto Komiyama* | |
Chem. Lett. 2008, 37 (6), 584-585. | |
21. | Accommodation of a Single Protein Guest in Nanometer-Scale Wells Embedded in a “DNA Nanotape” |
Akinori Kuzuya, Kentaro Numajiri, and Makoto Komiyama* | |
Angew. Chem., Int. Ed. 2008, 47 (18), 3400-3402. | |
20. | Coupling Across a DNA Helical Turn Yields a Hybrid DNA/Organic Catenane Doubly Tailed with Functional Termini |
Yu Liu, Akinori Kuzuya, Ruojie Sha, Johan Guillaume, Risheng Wang, James W. Canary,* and Nadrian C. Seeman* | |
J. Am. Chem. Soc. 2008, 130 (33), 10882-10883. | |
19. | Six-Helix and Eight-Helix DNA Nanotubes Assembled from Half-Tubes |
Akinori Kuzuya, Risheng Wang, Ruojie Sha, and Nadrian C. Seeman* | |
Nano Lett. 2007, 7 (6), 1757-1763. | |
18. | Simultaneous Genotyping of Indels and SNPs by Mass Spectroscopy |
Takuro Sasayama, Mayu Kato, Hiroyuki Aburatani, Akinori Kuzuya, and Makoto Komiyama* | |
J. Am. Soc. Mass Spectrom. 2006, 17 (1), 3-8. | |
17. | Lanthanide Ions as Versatile Catalyst in Biochemistry: Efficient Site-selective Scission of RNA by Free Lanthanide Ions |
Akinori Kuzuya, Kenzo Machida, Takuro Sasayama, Yun Shi, Ryo Mizoguchi, and Makoto Komiyama* | |
J. Alloy. Compd. 2006, 408-412, 396-399. | |
16. | Design of Phosphoramidite Monomer for Optimal Incorporation of Functional Intercalator to Main Chain of Oligonucleotide |
Yun Shi, Kenzo Machida, Akinori Kuzuya, and Makoto Komiyama* | |
Bioconjugate Chem. 2005, 16 (2), 306-311. | |
15. | Cooperation of Metal-Ion Fixation and Target-Site Activation for Efficient Site-Selective RNA Scission |
Akinori Kuzuya, Yun Shi, Takuro Sasayama, and Makoto Komiyama* | |
J. Biol. Inorg. Chem. 2005, 10 (3), 270-274. | |
14. | Selective Activation of Two Sites in RNA by Acridine-bearing Oligonucleotides for Clipping of Designated RNA Fragment |
Akinori Kuzuya, Ryo Mizoguchi, Takuro Sasayama, J.-M. Zhou, and Makoto Komiyama* | |
J. Am. Chem. Soc. 2004, 126 (5), 1430-1436. | |
13. | Crucial Role of Linker Portion in Acridine-Bearing Oligonucleotides for Highly Efficient Site-Selective RNA Scission |
Yun Shi, Akinori Kuzuya, Kenzo Machida, and Makoto Komiyama* | |
Tetrahedron Lett. 2004, 45 (19), 3703-3706. | |
12. | Non-Covalent Combination of Oligoamine and Oligonucleotide As Totally Organic Site-Selective RNA Cutter |
Yun Shi, Fumiya Niikura, Akinori Kuzuya, and Makoto Komiyama* | |
Chem. Lett. 2004, 33 (8), 1012-1013. | |
11. | Site-Selective RNA Scission at Two Sites for Precise Genotyping of SNPs by Mass Spectrometry |
Akinori Kuzuya, Ryo Mizoguchi, Fumi Morisawa, and Makoto Komiyama* | |
Chem. Commun. 2003 (6), 770-771. | |
10. | Stereochemically Pure Acridine-Modified DNA for Site-Selective Activation and Scission of RNA |
Yun Shi, Akinori Kuzuya, and Makoto Komiyama* | |
Chem. Lett. 2003, 32 (5), 464-465. | |
9. | Conjugation of Various Acridines to DNA for Site-Selective RNA Scission by Lanthanide Ion |
Akinori Kuzuya, Kenzo Machida, Ryo Mizoguchi, and Makoto Komiyama* | |
Bioconjugate Chem. 2002, 13 (2), 365-369. | |
8. | Metal Ion-Induced Site-Selective RNA Hydrolysis by Use of Acridine-Bearing Oligonucleotide as Cofactor |
Akinori Kuzuya, Ryo Mizoguchi, Fumi Morisawa, Kenzo Machida, and Makoto Komiyama* | |
J. Am. Chem. Soc. 2002, 124 (24), 6887-6894. | |
7. | A Highly Acidic Acridine for Efficient Site-Selective Activation of RNA Leading to an Eminent Ribozyme Mimic |
Akinori Kuzuya, Kenzo Machida, and Makoto Komiyama* | |
Tetrahedron Lett. 2002, 43 (46), 8249-8252. | |
6. | New Ribozyme-Mimics Employing Mg(II) Ion as Catalytic Center |
Akinori Kuzuya, Ryo Mizoguchi, and Makoto Komiyama* | |
Chem. Lett. 2001, 30 (6), 584-585. | |
5. | Non-Covalent Ternary Systems (DNA-Acridine Hybrid / DNA / Lanthanide(III)) for Efficient and Site-Selective RNA Scission |
Akinori Kuzuya, and Makoto Komiyama* | |
Chem. Commun. 2000 (20), 2019-2020. | |
4. | Sequence-Selective RNA Scission by Non-Covalent Combination of Acridine-Tethered DNA and Lanthanide(III) Ion |
Akinori Kuzuya, and Makoto Komiyama* | |
Chem. Lett. 2000, 29 (12), 1378-1379. | |
3. | Non-Covalent Combinations of Lanthanide(III) Ion and Two DNA Oligomers for Sequence-Selective RNA Scission |
Akinori Kuzuya, Masahiro Akai, and Makoto Komiyama* | |
Chem. Lett. 1999, 28 (10), 1035-1036. | |
2. | Conjugates of a Dinuclear Zinc(II) Complex and DNA Oligomers as Novel Sequence-Selective Artificial Ribonucleases |
Shigeo Matsuda, Akira Ishikubo, Akinori Kuzuya, Morio Yashiro, and Makoto Komiyama* | |
Angew. Chem., Int. Ed. 1998, 37 (23), 3284-3286. | |
1. | Molecular Design for a Pinpoint RNA Scission. Interposition of Oligoamines between Two DNA Oligomers |
Masayuki Endo, Yasushi Azuma, Yoshiyuki Saga, Akinori Kuzuya, Gota Kawai, and Makoto Komiyama* | |
J. Org. Chem. 1997, 62 (4), 846-852. |
<Proceedings>
13. | AUTOMATIC RECOGNITION OF DNA NANOSTRUCTURES IN ATOMIC FORCE MICROSCOPY (AFM) IMAGE: FIRST EXPERIENCE ON DNA PLIERS |
Yuexing Han, Akito Hara, Akinori Kuzuya, Ryousuke Watanae, Yuichi Ohya, and Akihiko Konagaya | |
International Conference on Applied and Theoretical Information Systems Research (ATISR2013) 2013. | |
12. | Nanomechanical DNA Origami Devices as Versatile Molecular Sensors |
Akinori Kuzuya,* Takahiro Yamazaki, Kohei Yasuda, Yusuke Sakai, Yusei Yamanaka, Yan Xu, Yuichiro Aiba, Yuichi Ohya, and Makoto Komiyama | |
IEEE NEMS 2012 2012, 405-408. | |
11. | Restriction Enzyme Treatment/Ligation Independent Cloning Using Caged Primers for PCR |
Akinori Kuzuya,* Keita Tanaka, Hitoshi Katada, Makoto Komiyama* | |
Nucleic Acids Symp. Ser. 2009, 53, 75-76. | |
19. | Direct Preparation of Sticky-Ended Duplexes within PCR by Using Caged Primers |
Keita Tanaka, Hitoshi Katada, Narumi Shigi, Akinori Kuzuya,* and Makoto Komiyama* | |
Nucleic Acids Symp. Ser. 2008, 52, 467-468. | |
9. | Single-Molecule Accommodation of Streptavidin in Nanometer-Scale Wells Formed in DNA Nanostructures |
Akinori Kuzuya,* Kentaro Numajiri, Mayumi Kimura, and Makoto Komiyama* | |
Nucleic Acids Symp. Ser. 2008, 52, 681-682. | |
8. | A Robust DNA Framework for Single Molecule Observation with Atomic Force Microscope |
Akinori Kuzuya, and Makoto Komiyama* | |
Nucleic Acids Symp. Ser. 2007, 51, 331-332. | |
7. | Photocontrol of Site-Selective RNA Scission |
Keita Tanaka, Yoji Yamamoto, Akinori Kuzuya, and Makoto Komiyama* | |
Nucleic Acids Symp. Ser. 2007, 51, 205-206. | |
6. | Site-Selective RNA Scission by PNA-Lu(III) Hybrid System |
Yoji Yamamoto, Mayumi Kimura, Mayu Kato, Akinori Kuzuya, and Makoto Komiyama* | |
Nucleic Acids Symp. Ser. 2006, 50, 267-268. | |
5. | Simultaneous Use of Highly Acidic Acridine and Rigid Chiral Linker for Efficient Site-Selective RNA Scission |
Yun Shi, Kenzo Machida, Akinori Kuzuya, and Makoto Komiyama* | |
Nucleic Acids Symp. Ser. 2004, 48, 219-220. | |
4. | Tandem Site-Selective RNA Scission Utilizing Acridine-DNA Conjugates |
Akinori Kuzuya, Ryo Mizoguchi, Takuro Sasayama, and Makoto Komiyama* | |
Nucleic Acids Res. Supple. 2003, 3, 167-168. | |
3. | Novel Approach for SNP Genotyping Based of Site-Selective RNA Scission |
Akinori Kuzuya, Ryo Mizoguchi, Fumi Morisawa, and Makoto Komiyama* | |
Nucleic Acids Res. Supple. 2002, 2, 129-130. | |
2. | Site-Selective Artificial Ribonuclease Using Pinpoint RNA Activation |
Akinori Kuzuya, Ryo Mizoguchi, and Makoto Komiyama* | |
Nucleic Acids Res. Supple. 2001, 1, 131-132. | |
1. | Sequence-Selective RNA Scission by Oligoamine-DNA Conjugates |
Akinori Kuzuya, Yasushi Azuma, Takuya Inokawa, Koichi Yoshinari, and Makoto Komiyama* | |
Nucleic Acids Symp. Ser. 1997, 37, 209-210. |
<Reviews>
13. | Molecular Origami: Designing Functional Molecules of the Future |
Hitoshi Ishida,* Takeshi Ito, Akinori Kuzuya | |
Molecules 2025, 30 (2), 242. | |
12. | From Molecular Robotics to Molecular Cybernetics: The First Step Toward Chemical Artificial Intelligence |
Akinori Kuzuya,* Shin-Ichiro M. Nomura, Taro Toyota, Takashi Nakakuki, Satoshi Murata | |
IEEE Trans. Mol. Biol. Multi-Scale Commun. 2023, 9 (3), 354-363. | |
11. | Supramolecular Enzyme-mimicking Catalysts Self-assembled from Peptides |
Qing Liu,* Akinori Kuzuya, Zhen-Gang Wang* | |
iScience 2022, 26 (1), 105831. | |
10. | Molecular Cybernetics: Challenges toward Cellular Chemical AI |
Satoshi Murata,* Taro Toyota, Shin-ichiro M. Nomura, Takashi Nakakuki, Akinori Kuzuya | |
Adv. Funct. Mater. 2022, 32 (37), 2201866. | |
9. | Molecular Swarm Robot Realized by the Intelligence of a Biomolecular Motor System and DNA |
Jakia Jannat Keya, Akinori Kuzuya, and Akira Kakugo | |
Seibutsu Butsuri 2021, 61 (5), 330-331. | |
8. | Hydrogels Utilizing G-Quadruplexes |
Akinori Kuzuya,* and Shizuma Tanaka | |
MOJ Poly. Sci. 2017, 1 (6), 00033. | |
7. | Nanomechanical Molecular Devices Made of DNA Origami |
Akinori Kuzuya,* and Yuichi Ohya* | |
Acc. Chem. Res. 2014, 47 (6), 1742-1749. | |
6. | DNA Nanostructures as Scaffolds for Metal Nanoparticles |
Akinori Kuzuya,* and Yuichi Ohya* | |
Polymer J. 2012, 44 (6), 452-460. | |
5. | DNA Origami: Fold, Stick, and Beyond |
Akinori Kuzuya,* and Makoto Komiyama* | |
Nanoscale 2010, 2 (3), 310-322. | |
4. | Non-covalent Site-selective Artificial Ribonucleases and Their Applications |
Akinori Kuzuya, and Makoto Komiyama* | |
Curr. Org. Chem. 2007, 11 (16), 1450-1459. | |
3. | DNA, PNA, and Their Derivatives for Precise Genotyping of SNPs |
Akinori Kuzuya, J.-M. Zhou, and Makoto Komiyama* | |
Mini Rev. Org. Chem. 2004, 1 (1), 125-131. | |
2. | Site-Selective Activation of RNA Leading to Sequence-Selective RNA Cutters |
Makoto Komiyama,* Akinori Kuzuya, and Ryo Mizoguchi | |
Bull. Chem. Soc. Jpn. 2002, 75 (12), 2547-2554. | |
1. | Sequence-Selective Artificial Ribonucleases |
Makoto Komiyama,* Jun Sumaoka, Akinori Kuzuya, and Yoji Yamamoto | |
Methods Enzymol. 2001, 341, 455-468. |
<Book Chapters>
5. | 11 Books in Japanese |
4. | Molecular Material for Molecular Robots |
Akinori Kuzuya | |
in Molecular Robotics, An Introduction, Satoshi Murata, Ed., pp 215-245, 2022, Springer, Singapore. | |
3. | DNA Origami for Molecular Robotics |
Akinori Kuzuya | |
in DNA Origami: Structures, Technology, and Applications, Masayuki Endo, Ed., pp 297-304, 2022, Wiley-VCH, Weinheim. | |
2. | Manipulation of Molecular Architecture with DNA |
Akinori Kuzuya | |
in Molecular Technology: Life Innovation, Hisashi Yamamoto & Takashi Kato, Ed., pp 25-42, 2018, Wiley-VCH, Weinheim. | |
1. | Sequence Selective Artificial Ribonucleases Employing Metal Ions as Scissors |
Akinori Kuzuya, Ryo Mizoguchi, and Makoto Komiyama* | |
in Artificial Ribonucleases, Marina. A. Zenkova, Ed., Nucleic Acids and Molecular Biology 13, pp 173-188, 2004, Springer-Verlag GmbH, Berlin. |