Comparison between Japanese and North American method for liquefaction assessment

Kanto Gakuin University
Nozomu YOSHIDA

Introduction

- What method do you use for liquefaction evaluation to average engineer?
 - Japan: e.g. Design specification of Highway bridge
 - U.S.: e.g. Technical paper by Seed 1971
 - North American engineer studies more than Japanese engineer
 - NSF Workshop in 1996 and 1998

Technical report NCEER-97-0022,
Youd, T. L. etc., Journal of GT, Vol. 127, No. 10

Basic standpoint

- North America
 - United Engineers
 - NSF Workshop
 - Study and think
 - Unsuggested (not recommended) issues

- Japan
 - Going my way
 - Many design specifications
 - Do not think or consider
 - Everything is written
 - Do as written following the specification
 - Poor engineer education system

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Design standards for port and harbour facilities</td>
<td>The Japan Port and Harbour Association</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Technical standards for port and harbour facilities in Japan</td>
<td>ditto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. System design manual for highway bridges</td>
<td>Japan Road Association</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Specifications for highway bridges, part 3 seismic design</td>
<td>Japan National Railway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Design standard for railway structures, foundation and retaining wall</td>
<td>Japan Society for Civil Engineers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Design standard for national railway structures (foundation and retaining wall)</td>
<td>Architectural Institute of Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Design criteria of building foundation structures and components</td>
<td>Ministry of Home Affairs, Fire Defense Agency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Recommendations for design of building foundations</td>
<td>The Japan Gas Association</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Notification specifying particulars of technical standards concerning control of hazardous materials</td>
<td>Japan Water Works Association</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Recommended practice for LNG in-ground storage</td>
<td>Japan Mining Industry Association, Ministry of International Trade and Industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Guidelines for remedial measures of water works facilities against earthquakes</td>
<td>Japan Sewage Works Association</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Specifications of construction of tailings dams and storage</td>
<td>Japan Road Association</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Evaluation for remedial measures or sewage works facilities against earthquakes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Design manual for common utility ducts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Highway earthwork series, manual for soft ground remediation</td>
<td>Japan Electric Association</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Technical guidelines for seismic design of nuclear power plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Highway bridge, Building foundation, Port facilities, Railway structures
Japanese academic system

- Architectural Institute of Japan
 - Architect
 - Building engineer
- Japan Society of Civil Engineers
 - Road
 - Airport and port
 - Railway
 - Dam
- Governmental office
 - Responsible only what they handles
 - Do not like to follow outside organization

Why many specifications

- When damage occurs, who is responsible?
 - Japan
 - Engineer: I calculated following the design specification, therefore I am not responsible
 - Governmental office: I made it under the assistance of academic expert, therefore it is unexpected.
 - Therefore, everything is to be written in the design specification.
 - Otherwise somebody judged it resulting in responsibility
 - North America
 - Sued by a customer?
 - Moss Landing Marine Research Institute
 - Damaged during 1989 eq.

Compared specifications

- NSF workshop recommendation
- Highway bridge and Building foundation
 - Hwy. and Bulg.

Job or volunteer

- If job, revised on a periodic basis
 - Highway bridge by Public Work Research Institute
- If volunteer, may not revised without something happen
 - Building foundation
 - 1995 Kobe earthquake (Large ground shaking)
 - 2011 Tohoku earthquake (Long duration)

Standard Penetration test

- Turkey, Philippines
 - Half of Japan
- Recent auto or semi-auto machine
 - Cone pulley: 63~73%
 - With special care: 80~90%
 - Semi automatic: 84% (average)
 - Full automatic: 81% (Average)
- ISO22476-3
 - Energy correction with measurement method
- JIS A 1219 (2013)
 - No description, therefore no measurement method
External load

- **Bldg.:** Equivalent cyclic stress ratio
 \[L = \frac{\tau_{av}}{\sigma'_{v0}} = \frac{r_{\nu}}{\sigma'_{v0}} \]
 \[\tau_{av} = \frac{\alpha_{max}}{g} \frac{\sigma_{v0}}{\sigma'_{v0}} \]

- **Hwy.:** Stress ratio during an earthquake
 \[L = \frac{\tau_{av}}{\sigma'_{v0}} = r_{\nu} \frac{\alpha_{max}}{g} \frac{\sigma_{v0}}{\sigma'_{v0}} \]

CSR
- **Cyclic stress ratio**
 \[CSR = \frac{\tau_{av}}{\sigma'_{v0}} = \frac{0.65}{g} \frac{\sigma_{v0}}{\sigma'_{v0}} \]

Evaluation of effective number of cycles

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>(N_e) at 0.65(\tau_{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>8.5</td>
</tr>
<tr>
<td>6.5</td>
<td>7.5</td>
</tr>
<tr>
<td>7.0</td>
<td>6.75</td>
</tr>
<tr>
<td>7.5</td>
<td>6.0</td>
</tr>
<tr>
<td>8.0</td>
<td>5.25</td>
</tr>
</tbody>
</table>

\(N_e \): Number of cycles
\(k \): Conversion coeff.
\(N_e \times k \): Equivalent number of cycles

Line with gradient 0.2
- \(r_n = 0.65 (N_e / 15)^{0.2} \)
 - can be approximated by
 \[r_n = 0.1 (M - 1) \]
 - **Applicability for** \(M > 8.5 \)
 - **Arai, 2011**
 - **Data scatters**
 - **Has it meaning?**

Other research shows 1/0.9~1/0.8
Hwy
- Shock and vibration type
 - Number of cycles 2 and 3
 - Number of waves larger than \(\tau_{\text{max}} \) before \(\tau_{\text{max}} \) appears
 - Side same as \(\tau_{\text{max}} \)
- \(r_n \) equivalent value 0.55~0.70

MSF: Magnitude scaling factor (N.A.)

\[
F_I = MSF \frac{CRR_{c5}}{CSR} = \frac{CRR_{c5}}{CSR / MSF}
\]

<table>
<thead>
<tr>
<th>(M)</th>
<th>Seed & Idriss</th>
<th>Idriss*1</th>
<th>Ambrogio</th>
<th>Arango</th>
<th>Andrus & Stokoe</th>
<th>Youd & Noble</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>1.43</td>
<td>2.20</td>
<td>2.86</td>
<td>3.00</td>
<td>2.20</td>
<td>2.8</td>
</tr>
<tr>
<td>6.0</td>
<td>1.32</td>
<td>1.76</td>
<td>2.20</td>
<td>2.00</td>
<td>1.65</td>
<td>2.1</td>
</tr>
<tr>
<td>6.5</td>
<td>1.19</td>
<td>1.44</td>
<td>1.69</td>
<td>1.60</td>
<td>1.40</td>
<td>1.6</td>
</tr>
<tr>
<td>7.0</td>
<td>1.08</td>
<td>1.10</td>
<td>1.30</td>
<td>1.25</td>
<td>1.10</td>
<td>1.25</td>
</tr>
<tr>
<td>7.5</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>8.0</td>
<td>0.94</td>
<td>0.84</td>
<td>0.67</td>
<td>0.75</td>
<td>0.85</td>
<td>0.87</td>
</tr>
<tr>
<td>8.5</td>
<td>0.89</td>
<td>0.72</td>
<td>0.44</td>
<td>-</td>
<td>-</td>
<td>0.65?</td>
</tr>
</tbody>
</table>

*1 Lecture at 1995 Seed Memorial Lecture, no paper
*2 Distance to liquefied site
*3 Use energy from equivalent cycles by Seed
Too conservative
Recommended (No recommendation for \(M < 7.5 \))

Stress reduction coefficient, \(r_d \)
- Apply until GL-20m
 \[
 r_d = 1 - 0.015z
 \]
- Applicable until GL-15m
 \[
 \begin{align*}
 r_d &= 1 - 0.00765 z_{0.5} \quad (z_{0.5} < 0.15m) \\
 r_d &= 1.174 - 0.0267 z_{0.5} \quad (0.15m < z < 0.3m)
 \end{align*}
 \]
 Excel use
 \[
 r_d = \frac{1 - 0.4133 z_{0.5} + 0.0405 z_{0.5} + 0.00173 z_{0.5}}{1 - 0.4177 z_{0.5} + 0.0572 z_{0.5} + 0.00121 z_{0.5}}
 \]

Liquefaction strength

- Bldg.

- Cyclic resistance ratio

Test vs Back Analysis
Read data point from figure

Degree of liq.	Comment	\(CRR_{c5} \)
Severe liq. | Sand boil and ground subsidence more than 2% or settlement of heavy structure more than 20cm | \(1 \times 10^{-5} \) | 0.5 |
Medium liq. | Sand boil and ground subsidence less than 2% or settlement of heavy structure less than 20cm | \(10^{-5} \) | 0.3 |
Border line | Site to distinguish liq. and no liq. | \(10^{-6} \) | 0.1 |
No liq. | No sand boil nor subsidence | \(10^{-6} \) | 0.1 |

\[
CRR_{c5} = \frac{1}{34} \left(N_{c5} \right) + \frac{1}{135} \left(N_{c5} \right) + \frac{1}{45} \left(N_{c5} \right) + \frac{1}{200} \left(N_{c5} \right)
\]
Basic concepts
- Relative density vs. strength
 \[\frac{D_r}{100} = a \left(\frac{D_c}{C} \right)^n \]
 \(a = 0.45, \; n = 14 \)
- Value of C
 \[C = 97 - 19 \log DA \]
 \(D_r = 21 \left(\frac{100N}{\sigma'_v + 70} \right) \)
 \(D_r = 16 \left(\sqrt{N_1 + \Delta N_f} \right) \)

Triaxial test
- Simple shear
- Meyerhof
 \(\gamma = 5\% \)

Confining stress dep.
- \(N_1 = C_N N = \frac{170}{\sigma'_v + 70} N \)
- \(N_1 = \sqrt{98/\sigma'_v} \cdot N \)

Hwy.
- After 1995 Kobe eq. liquefaction strength significantly changed based on frozen samples

Alluvial/Diluvial vs. Holocene/Pleistocene
- In Japan, Alluvial and Diluvial are used instead of Geologic age (Holocene and Pleistocene)
- In this presentation Holocene=Alluvial, Pleistocene= Diluvial

Spec. for highway bridges (1990 version)
- Specification for highway bridges (1996 version) (Cw=1)
- Design criteria of building foundation structures and commentaries
- Design standard for railway structures
- Technical guidelines for aseismic design of nuclear power plants
- Technical standards for port and harbor facilities in Japan

Mammalian evolution
- Cenozoic
 - Quaternary
 - Holocene
 - Pleistocene
 - Tertiary
 - Cretaceous
 - Jurassic
 - Triassic
 - Mesozoic
 - Paleozoic
 - Cambrian
 - Ordovician
 - Silurian
 - Devonian
 - Carboniferous
 - Permian

Sea level change
- Change in 2010 by Goecological Society of Japan

Geologic age
- millenary
 - Holocene
 - Pleistocene
- sea level (m)
 - 0
 - 100
- 1,650
- 2,580
- Change in 2010 by Goecological Society of Japan
Findings on frozen sampling

Frozen sample has been believed to be an undisturbed sample

Liquefaction strength

Bldg.
Highway Bridge

North America

\(N_a = \alpha + \beta (N_i)_{60} \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(F_c \leq 5%)</th>
<th>(5% < F_c \leq 35%)</th>
<th>(35% < F_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>0</td>
<td>1.76–190/(F_c^2)</td>
<td>5</td>
</tr>
<tr>
<td>(\beta)</td>
<td>1</td>
<td>0.99 + (F_c^{1.5})/1000</td>
<td>12</td>
</tr>
</tbody>
</table>

Various factors (N.A.)

\((N_i)_{60} = c_x c_y c_z c_k c_i N \)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Variable</th>
<th>(N_t)</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overburden stress</td>
<td>–</td>
<td>(c_N)</td>
<td>((P_o/\sigma'_0)^{0.5})</td>
</tr>
<tr>
<td>Overburden stress</td>
<td>–</td>
<td>(c_N)</td>
<td>(c_N \leq 1.7)</td>
</tr>
<tr>
<td>Energy ratio</td>
<td>Donut</td>
<td>(c_E)</td>
<td>0.5~1.0</td>
</tr>
<tr>
<td>Energy ratio</td>
<td>Safety</td>
<td>(c_E)</td>
<td>0.7~1.2</td>
</tr>
<tr>
<td>Energy ratio</td>
<td>Automatic fall donuts</td>
<td>(c_E)</td>
<td>0.8~1.3</td>
</tr>
<tr>
<td>Diameter of borehole</td>
<td>65~115mm</td>
<td>(c_B)</td>
<td>1.0</td>
</tr>
<tr>
<td>Diameter of borehole</td>
<td>150mm</td>
<td>(c_B)</td>
<td>1.05</td>
</tr>
<tr>
<td>Diameter of borehole</td>
<td>200mm</td>
<td>(c_B)</td>
<td>1.15</td>
</tr>
<tr>
<td>Rod length</td>
<td><3m</td>
<td>(c_R)</td>
<td>0.75</td>
</tr>
<tr>
<td>Rod length</td>
<td>3~4m</td>
<td>(c_R)</td>
<td>0.8</td>
</tr>
<tr>
<td>Rod length</td>
<td>4~6m</td>
<td>(c_R)</td>
<td>0.85</td>
</tr>
<tr>
<td>Rod length</td>
<td>6~10m</td>
<td>(c_R)</td>
<td>0.95</td>
</tr>
<tr>
<td>Rod length</td>
<td>10~30m</td>
<td>(c_R)</td>
<td>1.0</td>
</tr>
<tr>
<td>Sampling method</td>
<td>Standard</td>
<td>(c_s)</td>
<td>1.0</td>
</tr>
<tr>
<td>Sampling method</td>
<td>No liner</td>
<td>(c_s)</td>
<td>1.1~1.3</td>
</tr>
</tbody>
</table>

Other (N.A.)

Seed (Original)

\(F_l = MSF \frac{CRR_{1.5}}{CSR} K_{\sigma} K_{\sigma} \)

- \(K_{\sigma} \): Confining stress correction

Recommended among various research

\(K_{\sigma} = (\sigma'_0/\sigma)^{1.5} \)

Japan

\(c_N = \frac{98}{\sigma'_v} \)

\(c_N = \frac{170}{\sigma'_v + 70} \)

Other (N.A.)

\(D_{<40\%}(f=0.8) \)

\(D_{>80\%}(f=0.6) \)

Effective overburden stress ratio \(\sigma_0/P_o \)
Correction by slope
- Defined ad
 \[\alpha = \frac{\tau_{xy}}{\sigma'_{v_0}} \]
- Determine by triaxial test, but large scatter
 - Average engineer do not use

Aging effect
- Seed: 25% increase in 100 days
- Youd: Young ground is more liquefiable
- Not recommended because of short data
- Old sediment (older than several thousands)
 - Limited engineer uses aging, not Ks

Design ground shaking
- N.A.
 - Consider only Magnitude and other factor such as area, duration, fault mechanism is difficult. Conservative side
 - Not a big issue in the liquefied site
 - Use Moment magnitude, \(M_w \)
 - PGA when liquefaction does not occur
 - Empirical equation considering earthquake magnitude, focal distance, site condition, etc.
 - If empirical eq. is not available, seismic response analysis such as SHAKE and DESRA
 - Use amplification factor to be multiplied to PGA at the engineering seismic base layer
 - Require highly engineering judgement

- 2 directional components
 - geometric mean, but larger value is conservative
 - High frequency component (Period<0.1 s)
 - Spiky wave does not cause displacement because of short active time, therefore neglect
 - High frequency component is attenuated in SHAKE and DESRA
 - When using amplification factor, choice of frequency range is important

Japan
- Bldg. (1985)
 - Affected by various factors
 - Some of them is not clear
 - Affected by local ground condition
 - If liquefied, earthquake motion does not propagate to the ground surface
 - Target is horizontally layered deposit, but important is the case with structure exists
 - Proposed method gives rough indication
 - THEN, PGA recorded during past earthquakes is relevant
 - 200 cm/s²
 - Kawagishi-cho apartment house in Niigata eq. = 158
PGA is a result of response of ground, and is affected by
the ground conditions.
- Damage limit: 150~200 cm/s²
- Ultimate limit: 350 cm/s²
- PGA at Port Island during the 1995 Kobe eq.

PGA in liquefied site

- Change of acceleration by liquefaction is not considered
 in α_{max}
- Considering liquefaction requires effective stress
 seismic response analysis, but it is impossible
- FL method is a simplified method
- FL method is safety factor method
 - External load becomes large under larger ground shaking

<table>
<thead>
<tr>
<th>Ground type</th>
<th>1995</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1 (Ocean trench)</td>
<td>0.3</td>
<td>0.35</td>
</tr>
<tr>
<td>Type 2 (Near field eq.)</td>
<td>0.8</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Comparison of Japanese specifications

Comparison between Bldg. and Hwy

- 1996 version
2017 version

Definition of F_L

- **Bldg.**
 \[L = \frac{\sigma_{\text{max}} - \sigma_0}{\sigma_0} r_d \]
 \[r_d = 0.1(M - 1) \]

- **Hwy vs. Budg**
 \[F_L = \frac{c_1c_2c_3c_4R_L}{L} = \frac{c_1c_2R_L}{c_2L/r_d} = \frac{C}{r_d} \]
 \[C_v = 0.9 \left(1 + \frac{2K_0}{3} \right) = 0.57 \]

Relative density, Dr

<table>
<thead>
<tr>
<th>SPT N</th>
<th>D_r (%)</th>
<th>ϕ (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peck</td>
<td>Meyerhof</td>
</tr>
<tr>
<td>0~4</td>
<td>very loose</td>
<td>0~20</td>
</tr>
<tr>
<td>4~10</td>
<td>loose</td>
<td>28.5~30</td>
</tr>
<tr>
<td>10~30</td>
<td>medium</td>
<td>30~35</td>
</tr>
<tr>
<td>30~50</td>
<td>dense</td>
<td>35~40</td>
</tr>
<tr>
<td>50以上</td>
<td>very dense</td>
<td>40~45</td>
</tr>
</tbody>
</table>

Meyerhof
\[D_r = 21 \left(\frac{100N}{\sigma' + 70} \right) \]

Relative density in sites

- **Miyagi Pref.**
- **Seed**
- **Mikami**

R_L vs. D_r
Accuracy (2011, PWRI)

<table>
<thead>
<tr>
<th>Liq.</th>
<th>No Lq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL\leq1</td>
<td>53</td>
</tr>
<tr>
<td>FL$>$1</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Tokyo Bay area**: Old fill / natural deposit
 - Many no liq. site although FL\leq1
 - Fill after 1945 liquefy
 - There is no clear difference between borehole data between liq. and no liq. sites
- **Tone River area**
 - FL is relatively large in the liquefied sites
 - Thin thickness in case FL\leq1

Accuracy (2007)

- Proposed correction, $c_2=0.5$ is too conservative!
 - Large scatter under ocean trench type eq.

r_d is good evaluation
Concluding remarks

- Same framework, but different definition
- Liquefaction strength
 - Average or boundary
 - If average, half of them is in critical side!
 - Result was conservative, Why?

- Parameters
 - SPT N-value, overburden stress, fines contents
 - Is those sufficient? No!
 - What are other parameters?
 - Aging, K_a,