コンサートホールに用いられるリブ形状壁面の指向拡散度予測

関西大学 環境都市工学部 建築学科
建築環境工学第1研究室
建19-0002 秋月 大誠
指導教員 豊田 政弘 教授
目次

第1章 序論………………………………………………………………………………………………………1

第1節 本研究の背景…………………………………………………………………………………………1

第2節 本研究の目的…………………………………………………………………………………………1

第3節 本論文で使用する用語やその定義………………………………………………………………1

第2章 研究対象…………………………………………………………………………………………………3

第1節 研究対象の建築物の詳細…………………………………………………………………………3

第2節 研究対象となるリブ壁面について………………………………………………………………4

第3章 研究方法………………………………………………………………………………………………7

第1節 計算方法……………………………………………………………………………………………7

第2節 評価方法……………………………………………………………………………………………8

第3節 計算条件……………………………………………………………………………………………8

第4章 結果・考察……………………………………………………………………………………………12

第5章 結論……………………………………………………………………………………………………37

参考文献……………………………………………………………………………………………………38
第1章 序論

第1節 本研究の背景

先行研究(1)では、矩形や円形のリブ形状が規則的に並ぶ壁面の乱反射率について検討がなされており、リブの高さやリブと背後壁面との距離を変化させた際の乱反射率の変化について述べられている。しかし、個々のリブの寸法の変化や背後壁面の形状の変化については十分な検討がなされておらず、背後壁面の形状が平坦であるものとして研究が行われており、それらが及ぼすリブ形状壁面の拡散性への影響が明らかでない。

第2節 本研究の目的

本研究の目的は、宮崎県の野口遵記念館にて用いられるリブ形状を含んだ壁面の一部を切り取り、リブ寸法および背後壁面形状を変化させた際の拡散の程度を指向拡散度の観点から予測する。それにより、拡散に最適なリブ形状やその寸法、背後壁面形状を導くことを目的とする。

第3節 本論文で使用する用語やその定義および意味

まず、本論文のタイトルに用いているリブという用語について説明する。そもそもリブとは英語ではribと綴り、肋骨を意味する。建築においては補強部材や突起部分のことを示す。リブの簡単な形状の例として図1を参照されたい。色の濃い突起部分をリブと呼び、本体部材の強度補強や意匠目的で用いられる。本研究で考えるリブ形状は図1のような突起の場合もあるが、リブと背後壁面が離れたものも含むこととする。具体的な形状については第2章『研究対象』にて後述する。
図1 リブ形状についての例

次に、指向拡散度について説明する。指向拡散度の定義は「自由音場中における反射指向特性の均一性」であり、ある方向の入射波に対する方向別散乱エネルギーの自己相関係数を平均した次式で導出される（2）。

\[d(\theta', \phi') = \frac{\left(\sum_{i=1}^{N} E_i \right)^2 - \sum_{i=1}^{N} E_i^2}{\left(\sum_{i=1}^{N} E_i - 1 \right) \sum_{i=1}^{N} E_i} \] （1）

\[N_i = \frac{d\Omega_i}{d\Omega_{min}} \] （2）

ここで、d はある入射方向に対する指向拡散度、\(E_i \) は各方向の散乱エネルギー、n は方向の分割数、
\(d\Omega_i \) は立体角、\(d\Omega_{min} \) は\(d\Omega_i \) の最小値である。上記の式によって求められる値は、全く偏りがなくいかなる方向にも均等に反射されている状態で 1、ある方向に散乱エネルギーが集中する場合は 0 となり、この「全く偏りがなくいかなる方向にも均等に反射されている状態」のことを完全拡散反射と呼ぶ（2）。
第２章 研究対象

第１節 研究対象の建築物の詳細

本研究の対象となる建築物の詳細は以下のとおりである。図2に一階平面図を示す。

名称：野口遵記念館
所在地：宮崎県延岡市東本小路119-1
階数：地上3階
敷地面積：14,310.89 ㎡（建蔽率：22.81%）
延床面積：4,363.17（容積率：30.49%）
最高高さ：15.095m
構造：鉄筋コンクリート造、一部は鉄骨構造

図2 野口遵記念館の一階平面図
上記の建築物のうち、コンサートホール部分についての詳細も記載する。図3にホールの平面図を示す。

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>客席数</td>
<td>675席</td>
<td></td>
</tr>
<tr>
<td>全席空席時の残響時間</td>
<td></td>
<td></td>
</tr>
<tr>
<td>反射板</td>
<td>1.9秒前後</td>
<td></td>
</tr>
<tr>
<td>幕設備</td>
<td>1.3秒前後</td>
<td></td>
</tr>
</tbody>
</table>

図3 野口遵記念館内のコンサートホールの平面図
第2節 研究対象となるリブ壁面について

本章第1節に示した建築物におけるコンサートホールの壁面に用いるのに最適なリブを考える。ホールの完成予定図は図4に示す。図5で赤く表記した部分がリブ壁面の使用部分、すなわち本論文での研究対象である。

図4 野口遵記念館内のコンサートホールの完成予定図

図5 図4のうち本研究で対象とするリブ壁面
ここで、リブ壁面の平面図を使ってさらに詳しくリブの構造について説明する。図6がリブ形状壁面の断面図である。

図6 リブ形状を含んだ壁面の断面図

上部の斜線部が背後壁面、下部にある半円形部分がリブである。また、第3章『研究方法』にて後述するが、このリブの形状は円半径や切り欠き寸法、背後壁面との距離、背後壁面の形状を変化させて指向拡散度の比較を行うため、必ずしも図6と同じ構成になるわけではないということに注意されたい。背後壁面とリブの間にある部分は空気層であり、この空気層が前述した「背後壁面の形状」に関わるものであるため、この形状についても次章で述べる。
第3章 研究方法

第1節 計算方法

ここでは、予測を行うにあたって使用した計算手法について言及する。数値解析の手法にはさまざまな方法が存在しており、建築音響分野でよく利用されるものは有限要素法や境界要素法が挙げられる。有限要素法は計算対象領域を三角形などの多角形要素に分割し、微分方程式から弱形式を導いて解を得る手法である。境界要素法は計算対象領域の境界部分を面要素や線要素に分割し、微分方程式から積分方程式を導いて解を得る手法のことである。なお、境界要素法を用いる際は境界内部が均質な特性を持つ媒質でなければならない。この2つの手法の分割の例を図7〜9に示す。仮に計算対象形状が図7のものであるとしたとき、有限要素法と境界要素法ではそれぞれ図8、9のように分割して計算を行うこととなる。

図7 仮想の計算対象

図8 有限要素法の分割例

図9 境界要素法の分割例
有限要素法では図8、9に示したような計算対象領域を分割した三角形の頂点上の物理量が求まり、境界要素法では線要素と線要素の交点上の物理量が求まる。分割する要素を増やせば求まる値の予測精度は上がる。さて、本論文で考えるのはリブ壁面による反射であり、壁面内部について考慮しない。また、指向拡散度を求めるにはリブ壁面の一部を自由空間中に設置する必要があるため、上記の数値解析手法で今回用いるのは開領域を扱うことが可能な境界要素法が望ましい。

第2節 評価方法

第1章にて述べた通り、指向拡散度の定義は「自由音場中における反射指向特性の均一性」であるため、反射指向特性を求めることができれば、式(1)より指向拡散度を算出すことができる。計算方法については前述したように境界要素法を用いるが、本研究ではリブ壁面の断面形状に着目するため、2次元音場を想定する。

自由空間中の一点qに置かれた強さ-1の線音源による点pでの速度ポテンシャルを$G(p, q)\exp(-i\omega t)$としたときGを基本解と呼び、

$$G(p, q) = \frac{1}{4}H_0^{(1)}(kr) \quad (3)$$

で表される。ここで、$H_0^{(1)} = J_0 + iY_0$であり、H_0, J_0, iY_0はそれぞれ0次の第1種Hankel関数、Bessel関数、Neumann関数である。自由空間中に設置された試料に平面波が入射する状態を想定し、各入射条件における法線微分型積分方程式に境界要素法を適用すると、

$$A \cdot [\tilde{p}_1, \tilde{p}_2, \cdots, \tilde{p}_m, \tilde{p}_n] = [d_1, d_2, \cdots, d_l, \cdots, d_N] \quad (4)$$

という式が得られる。ただし$A_{lj} = \int e_j \frac{\delta G(r_l, r_q)}{\delta n_l} dS_q, d_{lt} = \frac{\delta}{\delta n_l} \exp(-ik_l \cdot r_l)$である。$	ilde{p}_j$は要素$j$の両面音圧差、$k_l$は各入射条件における入射波数ベクトルである。式(4)により、リブ壁面上に想定した要素節点の音圧差分布が計算される。

一方、試料中心を原点とする半円状に受音点を想定すれば、

$$[p_1, p_2, \cdots, p, \cdots, p_m] = -H \cdot [\tilde{p}_1, \tilde{p}_2, \cdots, \tilde{p}, \cdots, \tilde{p}_m] \quad (5)$$

により各受音点の音圧が得られる。ここで、$H_{mj} = \int e_j \frac{\delta G(r_m, r_q)}{\delta n_q} dS_q$であり、$p_{mj}$が各入射条件における受音点$m$の音圧である。これらの音圧分布の反射指向特性を表すこととなる。

このようにして算出した反射指向特性を第1章にて示した式(1)に代入することで指向拡散度を評価する。
第3節 計算条件

ここでは、計算を行うにあたっての流れや諸条件について述べる。図4にホール壁面の様子を示したが、今回取り扱うリブ形状に関する認識をさらに深めるために、研究対象とする円形の場合のリブ形状の例を図10に示す。

図10 円形のリブ形状の例

本研究ではリブ形状、および、背後壁面の形状に焦点を当てる。リブ形状については、円形の形状と矩形を考えることとした。さらに、リブの大きさを、円形リブでは直径30mm、60mm、90mmの3種類、矩形のリブについても横幅30mm、60mm、90mmの3種類、計6種類について計算を行う。ただし、直径や横幅を30mm、60mm、90mmと変化するにつれて、リブ高さを10mm、15mm、20mmと変化させ、それに伴ってリブの中心間距離も63mm、137mm、205.5mmと変化させた。リブ形状の条件を図11に示す。

さらに、背後壁面については、空気層がない場合、空気層がある場合、壁面が斜めとなっている場合の3種類で比較を行う。それぞれのリブ壁面構成の例は図12〜14に寸法とともに記載した。3種類の背後壁面とリブ形状6種類の組み合わせ18通りで計算を行う。ただし、いずれの場合も壁面全体の長さは3,288mmとした。
図11 リブ形状の各条件

円形リブ
(i) 直径30mmの円形のリブの場合
d = 63mm, r = 15mm, h = 10mm
(ii) 直径60mmの円形のリブの場合
d = 137mm, r = 30mm, h = 15mm
(iii) 直径90mmの円形のリブの場合
d = 205.5mm, r = 45mm, h = 20mm

矩形リブ
(i) 幅30mmの矩形のリブの場合
d = 63mm, r = 15mm, h = 10mm
(ii) 幅60mmの矩形のリブの場合
d = 137mm, r = 30mm, h = 15mm
(iii) 幅90mmの矩形のリブの場合
d = 205.5mm, r = 45mm, h = 20mm

図12 空気層がない場合の壁面形状と寸法

図13 空気層がある場合の壁面形状と寸法
図14 壁面が斜めの場合の壁面形状と寸法

次に、平面波の入射角度と周波数の条件を説明する。図15に示すように、入射角は5度から85度の角度を10度刻みとし、周波数は250Hzから4000Hzまでの音域を3分の1オクターブごとに区切った周波数で計算した。

図15 入射角度と周波数
第4章 結果・考察

計算結果を表1〜18に示す。列方向に周波数、行方向に角度をとっており、最下段に周波ごとの指向拡散度の平均値を記載している。また、結果の比較対象として、表19にリブも背後壁も存在しない平坦な壁面の指向拡散度の平均値も示す。ただし、空気層がある場合の2種類の壁面の違いを簡易に表すために、壁面が斜めとなっている場合の結果については表題目に「背後の壁面：斜め」と記載している。
表1、2 リブ形状が直径30mmの円形で背後の壁面に空気層がない場合の結果（左）とリブ形状が直径30mmの円形で背後の壁面に空気層がある場合の結果（右）
表3、4 リブ形状が直径30mmの円形で背後の壁面が斜めである場合の結果（左）とリブ形状が幅30mmの四角形で背後の壁面に空気層がない場合の結果（右）
表5、6 リブ形状が幅30 mmの矩形で背後の壁面に空気層がある場合の結果（左）とリブ形状が幅30 mmの矩形で背後の壁面が斜めである場合の結果（右）

| | 250 | 315 | 396.9 | 500 | 630 | 793.7 | 1000 | 1259.9 | 1587.4 | 2000 | 2519.8 | 3174.8 | 4000 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5 | 0.2129 | 0.1935 | 0.4573 | 0.1873 | 0.2088 | 0.2174 | 0.2077 | 0.1757 | 0.2042 | 0.1756 | 0.1428 | 0.1453 | 0.1673 |
| 15 | 0.2241 | 0.1902 | 0.4492 | 0.1775 | 0.1967 | 0.2115 | 0.2016 | 0.1739 | 0.1979 | 0.3048 | 0.3224 | 0.3324 | 0.325 |
| 25 | 0.2105 | 0.1944 | 0.4365 | 0.1624 | 0.1723 | 0.1926 | 0.1952 | 0.1753 | 0.1778 | 0.2423 | 0.36 | 0.3786 | 0.5165 |
| 35 | 0.2392 | 0.1907 | 0.4274 | 0.152 | 0.1441 | 0.1582 | 0.175 | 0.1718 | 0.154 | 0.2056 | 0.3436 | 0.3522 | 0.3639 |
| 45 | 0.2531 | 0.214 | 0.4615 | 0.1552 | 0.1315 | 0.1242 | 0.1341 | 0.1503 | 0.1385 | 0.1713 | 0.305 | 0.3599 | 0.1334 |
| 55 | 0.2791 | 0.2301 | 0.5599 | 0.1843 | 0.1454 | 0.1154 | 0.1031 | 0.099 | 0.1118 | 0.1387 | 0.2463 | 0.2379 | 0.2924 |
| 65 | 0.2975 | 0.2664 | 0.6513 | 0.2047 | 0.1778 | 0.1511 | 0.1302 | 0.1118 | 0.1066 | 0.1686 | 0.155 | 0.1981 | 0.1623 |
| 75 | 0.2984 | 0.2414 | 0.6363 | 0.1926 | 0.173 | 0.1487 | 0.1325 | 0.1129 | 0.0952 | 0.1049 | 0.2 | 0.3538 | 0.2331 |

平均値 | 0.252867 | 0.2193 | 0.525133 | 0.180222 | 0.1686 | 0.161867 | 0.1548 | 0.1404 | 0.141011 | 0.177678 | 0.249567 | 0.286578 | 0.271022 |

リブ形状:幅30㎜の四角形(背後の壁面:空気層あり)
<table>
<thead>
<tr>
<th>値</th>
<th>15</th>
<th>25</th>
<th>35</th>
<th>45</th>
<th>55</th>
<th>65</th>
<th>75</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.2136</td>
<td>0.1923</td>
<td>0.1791</td>
<td>0.1789</td>
<td>0.1921</td>
<td>0.2036</td>
<td>0.2028</td>
<td>0.188</td>
</tr>
<tr>
<td>315</td>
<td>0.2243</td>
<td>0.1907</td>
<td>0.1828</td>
<td>0.1762</td>
<td>0.1818</td>
<td>0.1998</td>
<td>0.1955</td>
<td>0.1737</td>
</tr>
<tr>
<td>396.9</td>
<td>0.2125</td>
<td>0.1929</td>
<td>0.1691</td>
<td>0.1692</td>
<td>0.1636</td>
<td>0.1801</td>
<td>0.1936</td>
<td>0.1737</td>
</tr>
<tr>
<td>500</td>
<td>0.2439</td>
<td>0.1904</td>
<td>0.1701</td>
<td>0.1552</td>
<td>0.1462</td>
<td>0.1487</td>
<td>0.1737</td>
<td>0.1646</td>
</tr>
<tr>
<td>630</td>
<td>0.258</td>
<td>0.2227</td>
<td>0.18</td>
<td>0.1449</td>
<td>0.1411</td>
<td>0.1224</td>
<td>0.1313</td>
<td>0.1367</td>
</tr>
<tr>
<td>793.7</td>
<td>0.2642</td>
<td>0.2247</td>
<td>0.1967</td>
<td>0.1722</td>
<td>0.1403</td>
<td>0.113</td>
<td>0.1148</td>
<td>0.1189</td>
</tr>
<tr>
<td>1000</td>
<td>0.305</td>
<td>0.2785</td>
<td>0.2585</td>
<td>0.245</td>
<td>0.2336</td>
<td>0.1957</td>
<td>0.1483</td>
<td>0.3034</td>
</tr>
<tr>
<td>1259.9</td>
<td>0.4159</td>
<td>0.351</td>
<td>0.2634</td>
<td>0.1908</td>
<td>0.1375</td>
<td>0.0967</td>
<td>0.1618</td>
<td>0.2799</td>
</tr>
<tr>
<td>1587.4</td>
<td>0.219</td>
<td>0.1893</td>
<td>0.1754</td>
<td>0.1801</td>
<td>0.1975</td>
<td>0.2125</td>
<td>0.2003</td>
<td>0.1728</td>
</tr>
<tr>
<td>2000</td>
<td>0.2263</td>
<td>0.1906</td>
<td>0.1723</td>
<td>0.171</td>
<td>0.1853</td>
<td>0.2033</td>
<td>0.1962</td>
<td>0.1701</td>
</tr>
<tr>
<td>2519.8</td>
<td>0.2251</td>
<td>0.1944</td>
<td>0.1715</td>
<td>0.1587</td>
<td>0.1628</td>
<td>0.1829</td>
<td>0.1897</td>
<td>0.1689</td>
</tr>
<tr>
<td>3174.8</td>
<td>0.2519</td>
<td>0.1974</td>
<td>0.1734</td>
<td>0.1699</td>
<td>0.1744</td>
<td>0.1985</td>
<td>0.1917</td>
<td>0.1727</td>
</tr>
<tr>
<td>4000</td>
<td>0.2693</td>
<td>0.2289</td>
<td>0.1895</td>
<td>0.153</td>
<td>0.133</td>
<td>0.1206</td>
<td>0.1246</td>
<td>0.1468</td>
</tr>
<tr>
<td>5000</td>
<td>0.2862</td>
<td>0.2424</td>
<td>0.2057</td>
<td>0.175</td>
<td>0.1447</td>
<td>0.1152</td>
<td>0.0995</td>
<td>0.0916</td>
</tr>
<tr>
<td>6300</td>
<td>0.3062</td>
<td>0.2639</td>
<td>0.2283</td>
<td>0.193</td>
<td>0.1649</td>
<td>0.138</td>
<td>0.1127</td>
<td>0.235</td>
</tr>
<tr>
<td>7937</td>
<td>0.3254</td>
<td>0.2834</td>
<td>0.2475</td>
<td>0.2103</td>
<td>0.1806</td>
<td>0.1548</td>
<td>0.1356</td>
<td>0.2205</td>
</tr>
<tr>
<td>10000</td>
<td>0.3662</td>
<td>0.3136</td>
<td>0.2667</td>
<td>0.221</td>
<td>0.1879</td>
<td>0.1526</td>
<td>0.1237</td>
<td>0.2553</td>
</tr>
</tbody>
</table>

平均値：

リブ形状：直径60mmの円形（背後の壁面：空気層なし）

<table>
<thead>
<tr>
<th>値</th>
<th>15</th>
<th>25</th>
<th>35</th>
<th>45</th>
<th>55</th>
<th>65</th>
<th>75</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.1893</td>
<td>0.1762</td>
<td>0.1653</td>
<td>0.1716</td>
<td>0.1911</td>
<td>0.2012</td>
<td>0.1972</td>
<td>0.2104</td>
</tr>
<tr>
<td>315</td>
<td>0.1906</td>
<td>0.1723</td>
<td>0.1691</td>
<td>0.171</td>
<td>0.1853</td>
<td>0.2033</td>
<td>0.1962</td>
<td>0.1701</td>
</tr>
<tr>
<td>396.9</td>
<td>0.1967</td>
<td>0.1715</td>
<td>0.1587</td>
<td>0.1628</td>
<td>0.1829</td>
<td>0.1897</td>
<td>0.1689</td>
<td>0.1528</td>
</tr>
<tr>
<td>500</td>
<td>0.1974</td>
<td>0.1734</td>
<td>0.1699</td>
<td>0.1744</td>
<td>0.1985</td>
<td>0.1917</td>
<td>0.1727</td>
<td>0.1528</td>
</tr>
<tr>
<td>630</td>
<td>0.1997</td>
<td>0.175</td>
<td>0.1552</td>
<td>0.1462</td>
<td>0.1487</td>
<td>0.1737</td>
<td>0.1646</td>
<td>0.1468</td>
</tr>
<tr>
<td>793.7</td>
<td>0.2289</td>
<td>0.1895</td>
<td>0.153</td>
<td>0.133</td>
<td>0.1206</td>
<td>0.1246</td>
<td>0.1468</td>
<td>0.1304</td>
</tr>
<tr>
<td>1000</td>
<td>0.1923</td>
<td>0.1762</td>
<td>0.1653</td>
<td>0.1716</td>
<td>0.1911</td>
<td>0.2012</td>
<td>0.1972</td>
<td>0.2104</td>
</tr>
<tr>
<td>1259.9</td>
<td>0.2003</td>
<td>0.175</td>
<td>0.1699</td>
<td>0.1744</td>
<td>0.1985</td>
<td>0.1917</td>
<td>0.1727</td>
<td>0.1528</td>
</tr>
<tr>
<td>1587.4</td>
<td>0.2033</td>
<td>0.1734</td>
<td>0.1699</td>
<td>0.1744</td>
<td>0.1985</td>
<td>0.1917</td>
<td>0.1727</td>
<td>0.1528</td>
</tr>
<tr>
<td>2000</td>
<td>0.2065</td>
<td>0.1762</td>
<td>0.1653</td>
<td>0.1716</td>
<td>0.1911</td>
<td>0.2012</td>
<td>0.1972</td>
<td>0.2104</td>
</tr>
<tr>
<td>2519.8</td>
<td>0.2093</td>
<td>0.175</td>
<td>0.1699</td>
<td>0.1744</td>
<td>0.1985</td>
<td>0.1917</td>
<td>0.1727</td>
<td>0.1528</td>
</tr>
<tr>
<td>3174.8</td>
<td>0.2122</td>
<td>0.1734</td>
<td>0.1699</td>
<td>0.1744</td>
<td>0.1985</td>
<td>0.1917</td>
<td>0.1727</td>
<td>0.1528</td>
</tr>
<tr>
<td>4000</td>
<td>0.2151</td>
<td>0.1762</td>
<td>0.1653</td>
<td>0.1716</td>
<td>0.1911</td>
<td>0.2012</td>
<td>0.1972</td>
<td>0.2104</td>
</tr>
</tbody>
</table>

平均値：

リブ形状：直径60mmの円形（背後の壁面：空気層あり）
表9、10 リブ形状が直径60 mm の円形で背後の壁面が斜めである場合の結果 (左) と リブ形状が幅60 mm の矩形で背後の壁面に空気層がない場合の結果 (右)

<table>
<thead>
<tr>
<th>線図</th>
<th>250</th>
<th>315</th>
<th>396.9</th>
<th>500</th>
<th>630</th>
<th>793.7</th>
<th>1000</th>
<th>1259.9</th>
<th>1587.4</th>
<th>2000</th>
<th>2519.8</th>
<th>3174.8</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均値</td>
<td>0.3911</td>
<td>0.3085</td>
<td>0.3169</td>
<td>0.3322</td>
<td>0.2666</td>
<td>0.2028</td>
<td>0.2222</td>
<td>0.1838</td>
<td>0.213</td>
<td>0.4059</td>
<td>0.3481</td>
<td>0.3592</td>
<td>0.2866</td>
</tr>
</tbody>
</table>

リブ形状: 直径60㎜の円形（背後の壁面: 斜め）

<table>
<thead>
<tr>
<th>線図</th>
<th>250</th>
<th>315</th>
<th>396.9</th>
<th>500</th>
<th>630</th>
<th>793.7</th>
<th>1000</th>
<th>1259.9</th>
<th>1587.4</th>
<th>2000</th>
<th>2519.8</th>
<th>3174.8</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均値</td>
<td>0.3788</td>
<td>0.3558</td>
<td>0.3181</td>
<td>0.3285</td>
<td>0.2715</td>
<td>0.1918</td>
<td>0.2153</td>
<td>0.1825</td>
<td>0.2871</td>
<td>0.5434</td>
<td>0.3472</td>
<td>0.3472</td>
<td>0.3342</td>
</tr>
</tbody>
</table>

リブ形状: 幅60㎜の四角形（背後の壁面: 空気層なし）

<table>
<thead>
<tr>
<th>線図</th>
<th>250</th>
<th>315</th>
<th>396.9</th>
<th>500</th>
<th>630</th>
<th>793.7</th>
<th>1000</th>
<th>1259.9</th>
<th>1587.4</th>
<th>2000</th>
<th>2519.8</th>
<th>3174.8</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均値</td>
<td>0.324</td>
<td>0.409</td>
<td>0.3372</td>
<td>0.3295</td>
<td>0.3289</td>
<td>0.1939</td>
<td>0.2082</td>
<td>0.3984</td>
<td>0.4115</td>
<td>0.2323</td>
<td>0.4133</td>
<td>0.3433</td>
<td></td>
</tr>
</tbody>
</table>

（※表5: 直径60㎜の円形）
表11、12
リブ形状が幅60mmの矩形で背後の壁面に空気層がある場合の結果（左）とリブ形状が幅60mmの矩形で背後の壁面が斜めである場合の結果（右）

<table>
<thead>
<tr>
<th></th>
<th>0.0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
<th>1.1</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.0</td>
</tr>
<tr>
<td>315</td>
<td>0.0</td>
</tr>
<tr>
<td>396.9</td>
<td>0.0</td>
</tr>
<tr>
<td>500</td>
<td>0.0</td>
</tr>
<tr>
<td>630</td>
<td>0.0</td>
</tr>
<tr>
<td>793.7</td>
<td>0.0</td>
</tr>
<tr>
<td>1000</td>
<td>0.0</td>
</tr>
<tr>
<td>1259.9</td>
<td>0.0</td>
</tr>
<tr>
<td>1587.4</td>
<td>0.0</td>
</tr>
<tr>
<td>2000</td>
<td>0.0</td>
</tr>
<tr>
<td>2519.8</td>
<td>0.0</td>
</tr>
<tr>
<td>3174.8</td>
<td>0.0</td>
</tr>
<tr>
<td>4000</td>
<td>0.0</td>
</tr>
</tbody>
</table>

平均値
- リブ形状: 幅60㎜の四角形 (背後の壁面: 空気層あり)
- リブ形状: 幅60㎜の四角形 (背後の壁面: 斜め)
<table>
<thead>
<tr>
<th>リブ形状</th>
<th>背後の壁面</th>
<th>結果</th>
<th>平均値</th>
<th>順位</th>
</tr>
</thead>
<tbody>
<tr>
<td>直径90㎜の円形</td>
<td>空気層なし</td>
<td>250</td>
<td>0.2124</td>
<td>88</td>
</tr>
<tr>
<td>直径90㎜の円形</td>
<td>空気層あり</td>
<td>250</td>
<td>0.2554</td>
<td>91</td>
</tr>
</tbody>
</table>

表13,14 リブ形状が直径90㎜の円形で背後の壁面に空気層がない場合の結果 (左) と リブ形状が直径90㎜の円形で背後の壁面に空気層がある場合の結果 (右)
表15、16 リブ形状が直径90㎜の円形で背後の壁面が斜めである場合の結果（左）とリブ形状が幅90㎜の長方形で背後の壁面に背後層がない場合の結果（右）

<table>
<thead>
<tr>
<th>85</th>
<th>0.4103</th>
<th>0.4521</th>
<th>0.6311</th>
<th>0.6831</th>
<th>0.7462</th>
<th>0.8969</th>
<th>1.0469</th>
<th>1.2269</th>
<th>1.3969</th>
<th>1.7869</th>
<th>2.0569</th>
<th>2.3269</th>
<th>2.6069</th>
<th>2.8869</th>
<th>3.1669</th>
<th>3.4469</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>0.3308</td>
<td>0.3007</td>
<td>0.2907</td>
<td>0.2147</td>
<td>0.2097</td>
<td>0.2048</td>
<td>0.1838</td>
<td>0.1856</td>
<td>0.1651</td>
<td>0.3161</td>
<td>0.2891</td>
<td>0.3081</td>
<td>0.3271</td>
<td>0.3461</td>
<td>0.3651</td>
<td>0.3841</td>
</tr>
<tr>
<td>65</td>
<td>0.4815</td>
<td>0.4525</td>
<td>0.3925</td>
<td>0.3625</td>
<td>0.3785</td>
<td>0.3735</td>
<td>0.3685</td>
<td>0.3635</td>
<td>0.3335</td>
<td>0.3445</td>
<td>0.3555</td>
<td>0.3665</td>
<td>0.3775</td>
<td>0.3885</td>
<td>0.4005</td>
<td>0.4115</td>
</tr>
<tr>
<td>55</td>
<td>0.8235</td>
<td>0.8525</td>
<td>0.7625</td>
<td>0.7325</td>
<td>0.7485</td>
<td>0.7435</td>
<td>0.7385</td>
<td>0.7335</td>
<td>0.6635</td>
<td>0.6745</td>
<td>0.6855</td>
<td>0.6965</td>
<td>0.7075</td>
<td>0.7185</td>
<td>0.7295</td>
<td>0.7405</td>
</tr>
<tr>
<td>45</td>
<td>1.0515</td>
<td>1.0825</td>
<td>0.9925</td>
<td>0.9625</td>
<td>0.9785</td>
<td>0.9735</td>
<td>0.9685</td>
<td>0.9635</td>
<td>0.8935</td>
<td>0.9045</td>
<td>0.9155</td>
<td>0.9265</td>
<td>0.9375</td>
<td>0.9485</td>
<td>0.9595</td>
<td>0.9705</td>
</tr>
<tr>
<td>35</td>
<td>1.0815</td>
<td>1.1125</td>
<td>1.0225</td>
<td>0.9925</td>
<td>1.0085</td>
<td>1.0035</td>
<td>0.9985</td>
<td>0.9935</td>
<td>0.9235</td>
<td>0.9345</td>
<td>0.9455</td>
<td>0.9565</td>
<td>0.9675</td>
<td>0.9785</td>
<td>0.9895</td>
<td>0.9995</td>
</tr>
<tr>
<td>25</td>
<td>1.0715</td>
<td>1.1025</td>
<td>1.0125</td>
<td>0.9825</td>
<td>1.0085</td>
<td>1.0035</td>
<td>0.9985</td>
<td>0.9935</td>
<td>0.9235</td>
<td>0.9345</td>
<td>0.9455</td>
<td>0.9565</td>
<td>0.9675</td>
<td>0.9785</td>
<td>0.9895</td>
<td>0.9995</td>
</tr>
<tr>
<td>15</td>
<td>1.0815</td>
<td>1.1125</td>
<td>1.0225</td>
<td>0.9925</td>
<td>1.0085</td>
<td>1.0035</td>
<td>0.9985</td>
<td>0.9935</td>
<td>0.9235</td>
<td>0.9345</td>
<td>0.9455</td>
<td>0.9565</td>
<td>0.9675</td>
<td>0.9785</td>
<td>0.9895</td>
<td>0.9995</td>
</tr>
<tr>
<td>5</td>
<td>1.0115</td>
<td>1.0425</td>
<td>0.9525</td>
<td>0.9225</td>
<td>0.9385</td>
<td>0.9335</td>
<td>0.9285</td>
<td>0.9235</td>
<td>0.8535</td>
<td>0.8645</td>
<td>0.8755</td>
<td>0.8865</td>
<td>0.8975</td>
<td>0.9085</td>
<td>0.9195</td>
<td>0.9295</td>
</tr>
<tr>
<td>平均値</td>
<td>1.0115</td>
<td>1.0425</td>
<td>0.9525</td>
<td>0.9225</td>
<td>0.9385</td>
<td>0.9335</td>
<td>0.9285</td>
<td>0.9235</td>
<td>0.8535</td>
<td>0.8645</td>
<td>0.8755</td>
<td>0.8865</td>
<td>0.8975</td>
<td>0.9085</td>
<td>0.9195</td>
<td>0.9295</td>
</tr>
</tbody>
</table>

リブ形状:直径90㎜の円形（背後の壁面:斜め）
リブ形状:幅90㎜の長方形（背後の壁面:空気層なし）
表17、18 リブ形状が幅90mmの矩形で背後の壁面に背後層がある場合の結果（左）とリブ形状が幅90mmの矩形で背後の壁面が斜めである場合の結果（右）
表19 リブや空気層が存在しない平坦な壁面の結果

<table>
<thead>
<tr>
<th>厚さ</th>
<th>15</th>
<th>25</th>
<th>35</th>
<th>45</th>
<th>55</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>平均値</th>
</tr>
</thead>
<tbody>
<tr>
<td>厚さ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0.372	0.2898	0.3464	0.3123	0.2261	0.452	0.416	0.275	0.268	0.397
0.694	0.3723	0.2264	0.452	0.416	0.275	0.268	0.397		
0.2261	0.3723	0.694	0.3723	0.452	0.416	0.275	0.268	0.397	
0.2264	0.3723	0.694	0.3723	0.452	0.416	0.275	0.268	0.397	
0.2261	0.3723	0.694	0.3723	0.452	0.416	0.275	0.268	0.397	
0.2264	0.3723	0.694	0.3723	0.452	0.416	0.275	0.268	0.397	
0.2261	0.3723	0.694	0.3723	0.452	0.416	0.275	0.268	0.397	
0.2264	0.3723	0.694	0.3723	0.452	0.416	0.275	0.268	0.397	
0.2261	0.3723	0.694	0.3723	0.452	0.416	0.275	0.268	0.397	
0.2264	0.3723	0.694	0.3723	0.452	0.416	0.275	0.268	0.397	
0.2261	0.3723	0.694	0.3723	0.452	0.416	0.275	0.268	0.397	
0.2264	0.3723	0.694	0.3723	0.452	0.416	0.275	0.268	0.397	
0.2261	0.3723	0.694	0.3723	0.452	0.416	0.275	0.268	0.397	

注：リブなしの平坦な壁面
また、表に加えて、指向拡散度の平均値を示したグラフを図16～34に示す。グラフの横軸は250 Hzから4000 Hzの範囲の周波数、縦軸は指向拡散度である。

図16 リブ形状が直径30 mmの円形で背後の壁面に空気層がない場合の周波数ごとの指向拡散度の平均値

図17 リブ形状が直径30 mmの円形で背後の壁面に空気層がある場合の周波数ごとの指向拡散度の平均値
図18 リブ形状が直径30mmの円形で背後の壁面が斜めの場合の周波数ごとの指向拡散度の平均値

図19 リブ形状が幅30mmの矩形で背後の壁面に空気層がない場合の周波数ごとの指向拡散度の平均値
図20 リブ形状が幅30mmの矩形で背後の壁面に空気層がある場合の周波数ごとの指向拡散度の平均値

図21 リブ形状が幅30mmの矩形で背後の壁面が斜めの場合の周波数ごとの指向拡散度の平均値
図22 リブ形状が直径60mmの円形で背後の壁面に空気層がない場合の周波数ごとの指向拡散度の平均値

図23 リブ形状が直径60mmの円形で背後の壁面に空気層がある場合の周波数ごとの指向拡散度の平均値
図24 リブ形状が直径60mmの円形で背後の壁面が斜めの場合の周波数ごとの指向拡散度の平均値

図25 リブ形状が幅60mmの矩形で背後の壁面に空気層がない場合の周波数ごとの指向拡散度の平均値
図26 リブ形状が幅60 mm 矩形で背後の壁面に空気層がある場合の周波数ごとの指向拡散度の平均値

図27 リブ形状が幅60 mm 矩形で背後の壁面が斜めの場合の周波数ごとの指向拡散度の平均値
図28 リブ形状が直径90㎜の円形で背後の壁面に空気層がない場合の周波数ごとの指向拡散度の平均値

図29 リブ形状が直径90㎜の円形で背後の壁面に空気層がある場合の周波数ごとの指向拡散度の平均値
図30 リブ形状が直径90㎜の円形で背後の壁面が斜めの場合の周波数ごとの指向拡散度の平均値

図31 リブ形状が幅90㎜の矩形で背後の壁面に空気層がない場合の周波数ごとの指向拡散度の平均値
図32 リブ形状が幅90mmの矩形で背後の壁面に空気層がある場合の周波数ごとの指向拡散度の平均値

図33 リブ形状が幅90mmの矩形で背後の壁面が斜めの場合の周波数ごとの指向拡散度の平均値
図34 リブ形状を含まない平坦な壁面の周波数ごとの指向拡散度の平均値

これらのグラフを直径、および、幅が30 mm、60 mm、90 mmの場合の結果でまとめた3種類のグラフを図35〜37に示し、それらの差を比較する。それぞれにリブも背後壁も存在しない平坦な壁面の結果も併せて示す。

図35 リブ形状の大きさが30 mmの場合の周波数ごとの指向拡散度の平均値をまとめたもの
図36 リブ形状の大きさが60mmの場合の周波数ごとの指向拡散度の平均値をまとめたもの

図37 リブ形状の大きさが90mmの場合の周波数ごとの指向拡散度の平均値をまとめたもの
図35〜37の比較より、リブ形状の大きさに関わらず、背後に斜めの空気層がある場合が指向拡散度が高いことがわかった。さらに、背後層が斜めである場合のみでグラフをまとめたものを図38に示し、リブ形状の大きさ30 mm、60 mm、90 mmの内どれが最も拡散性能が高いかを検討する。

図38 壁面が斜め場合の周波数ごとの指向拡散度の平均値をまとめたもの

図38より、本研究で考えたリブ形状壁面の中ではリブの幅が90 mmのものが1000 Hz以降で特に拡散性能が高いことがわかった。しかし、円形と矩形で大きな差が見られなかったため、90 mmの円形と矩形の場合で背後の空気層が斜めである際の指向拡散度の結果の2つの表を用いて、同一条件下でより指向拡散度が大きい方に色付けしたものを表20、21に示す。
リブ形状が幅90㎜の矩形で背後の壁面が斜めである場合の結果（左）とリブ形状が直径90㎜の円形で背後の壁面が斜めである場合の結果（右）

<table>
<thead>
<tr>
<th>角度(deg)</th>
<th>250</th>
<th>315</th>
<th>396.9</th>
<th>500</th>
<th>630</th>
<th>793.7</th>
<th>1000</th>
<th>1259.9</th>
<th>1587.4</th>
<th>2000</th>
<th>2519.8</th>
<th>3174.8</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.3926</td>
<td>0.2875</td>
<td>0.2958</td>
<td>0.3447</td>
<td>0.3433</td>
<td>0.2151</td>
<td>0.2473</td>
<td>0.2353</td>
<td>0.5159</td>
<td>0.5019</td>
<td>0.3781</td>
<td>0.2224</td>
<td>0.2711</td>
</tr>
<tr>
<td>15</td>
<td>0.3898</td>
<td>0.3359</td>
<td>0.2734</td>
<td>0.3326</td>
<td>0.3816</td>
<td>0.209</td>
<td>0.2549</td>
<td>0.5252</td>
<td>0.496</td>
<td>0.309</td>
<td>0.3397</td>
<td>0.3956</td>
<td>0.4723</td>
</tr>
<tr>
<td>25</td>
<td>0.3454</td>
<td>0.3795</td>
<td>0.3005</td>
<td>0.3067</td>
<td>0.4013</td>
<td>0.1866</td>
<td>0.3695</td>
<td>0.2803</td>
<td>0.3568</td>
<td>0.3453</td>
<td>0.3869</td>
<td>0.3369</td>
<td>0.4521</td>
</tr>
<tr>
<td>35</td>
<td>0.4151</td>
<td>0.4151</td>
<td>0.3376</td>
<td>0.326</td>
<td>0.206</td>
<td>0.2411</td>
<td>0.2191</td>
<td>0.5082</td>
<td>0.4323</td>
<td>0.3114</td>
<td>0.2785</td>
<td>0.2303</td>
<td>0.408</td>
</tr>
<tr>
<td>45</td>
<td>0.408</td>
<td>0.3508</td>
<td>0.2895</td>
<td>0.3323</td>
<td>0.3403</td>
<td>0.1997</td>
<td>0.2459</td>
<td>0.4374</td>
<td>0.4664</td>
<td>0.3247</td>
<td>0.3957</td>
<td>0.3389</td>
<td>0.3876</td>
</tr>
<tr>
<td>55</td>
<td>0.3505</td>
<td>0.4068</td>
<td>0.3166</td>
<td>0.3104</td>
<td>0.3718</td>
<td>0.193</td>
<td>0.3437</td>
<td>0.323</td>
<td>0.3903</td>
<td>0.3614</td>
<td>0.4273</td>
<td>0.3071</td>
<td>0.3666</td>
</tr>
<tr>
<td>65</td>
<td>0.4815</td>
<td>0.4225</td>
<td>0.4311</td>
<td>0.3254</td>
<td>0.3072</td>
<td>0.2374</td>
<td>0.275</td>
<td>0.3383</td>
<td>0.4508</td>
<td>0.3497</td>
<td>0.2226</td>
<td>0.4207</td>
<td>0.4664</td>
</tr>
<tr>
<td>75</td>
<td>0.631</td>
<td>0.4482</td>
<td>0.4215</td>
<td>0.4267</td>
<td>0.384</td>
<td>0.3717</td>
<td>0.4989</td>
<td>0.4094</td>
<td>0.2335</td>
<td>0.2478</td>
<td>0.1917</td>
<td>0.2777</td>
<td>0.3176</td>
</tr>
<tr>
<td>85</td>
<td>0.4103</td>
<td>0.5215</td>
<td>0.6331</td>
<td>0.6003</td>
<td>0.3874</td>
<td>0.3863</td>
<td>0.3072</td>
<td>0.3655</td>
<td>0.413</td>
<td>0.3437</td>
<td>0.2303</td>
<td>0.2711</td>
<td>0.408</td>
</tr>
<tr>
<td>95</td>
<td>0.0016</td>
</tr>
</tbody>
</table>

リブ形状が直径90㎜の円形で背後の壁面が斜めである場合の結果（右）

<table>
<thead>
<tr>
<th>角度(deg)</th>
<th>250</th>
<th>315</th>
<th>396.9</th>
<th>500</th>
<th>630</th>
<th>793.7</th>
<th>1000</th>
<th>1259.9</th>
<th>1587.4</th>
<th>2000</th>
<th>2519.8</th>
<th>3174.8</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.3926</td>
<td>0.2875</td>
<td>0.2958</td>
<td>0.3447</td>
<td>0.3433</td>
<td>0.2151</td>
<td>0.2473</td>
<td>0.2353</td>
<td>0.5159</td>
<td>0.5019</td>
<td>0.3781</td>
<td>0.2224</td>
<td>0.2711</td>
</tr>
<tr>
<td>15</td>
<td>0.3898</td>
<td>0.3359</td>
<td>0.2734</td>
<td>0.3326</td>
<td>0.3816</td>
<td>0.209</td>
<td>0.2549</td>
<td>0.5252</td>
<td>0.496</td>
<td>0.309</td>
<td>0.3397</td>
<td>0.3956</td>
<td>0.4723</td>
</tr>
<tr>
<td>25</td>
<td>0.3454</td>
<td>0.3795</td>
<td>0.3005</td>
<td>0.3067</td>
<td>0.4013</td>
<td>0.1866</td>
<td>0.3695</td>
<td>0.2803</td>
<td>0.3568</td>
<td>0.3453</td>
<td>0.3869</td>
<td>0.3369</td>
<td>0.4521</td>
</tr>
<tr>
<td>35</td>
<td>0.4151</td>
<td>0.4151</td>
<td>0.3376</td>
<td>0.326</td>
<td>0.206</td>
<td>0.2411</td>
<td>0.2191</td>
<td>0.5082</td>
<td>0.4323</td>
<td>0.3114</td>
<td>0.2785</td>
<td>0.2303</td>
<td>0.408</td>
</tr>
<tr>
<td>45</td>
<td>0.408</td>
<td>0.3508</td>
<td>0.2895</td>
<td>0.3323</td>
<td>0.3403</td>
<td>0.1997</td>
<td>0.2459</td>
<td>0.4374</td>
<td>0.4664</td>
<td>0.3247</td>
<td>0.3957</td>
<td>0.3389</td>
<td>0.3876</td>
</tr>
<tr>
<td>55</td>
<td>0.3505</td>
<td>0.4068</td>
<td>0.3166</td>
<td>0.3104</td>
<td>0.3718</td>
<td>0.193</td>
<td>0.3437</td>
<td>0.323</td>
<td>0.3903</td>
<td>0.3614</td>
<td>0.4273</td>
<td>0.3071</td>
<td>0.3666</td>
</tr>
<tr>
<td>65</td>
<td>0.4815</td>
<td>0.4225</td>
<td>0.4311</td>
<td>0.3254</td>
<td>0.3072</td>
<td>0.2374</td>
<td>0.275</td>
<td>0.3383</td>
<td>0.4508</td>
<td>0.3497</td>
<td>0.2226</td>
<td>0.4207</td>
<td>0.4664</td>
</tr>
<tr>
<td>75</td>
<td>0.631</td>
<td>0.4482</td>
<td>0.4215</td>
<td>0.4267</td>
<td>0.384</td>
<td>0.3717</td>
<td>0.4989</td>
<td>0.4094</td>
<td>0.2335</td>
<td>0.2478</td>
<td>0.1917</td>
<td>0.2777</td>
<td>0.3176</td>
</tr>
<tr>
<td>85</td>
<td>0.4103</td>
<td>0.5215</td>
<td>0.6331</td>
<td>0.6003</td>
<td>0.3874</td>
<td>0.3863</td>
<td>0.3072</td>
<td>0.3655</td>
<td>0.413</td>
<td>0.3437</td>
<td>0.2303</td>
<td>0.2711</td>
<td>0.408</td>
</tr>
<tr>
<td>95</td>
<td>0.0016</td>
</tr>
</tbody>
</table>
このようにして比べれば、非常にわずかにではあるが円形の方が色付けされた条件が多くことがわかる。したがって、リブ形状としては円形が望ましいと考えられる。
第5章 結論

第4章での結果、および、考察により、本論文の目的であった「拡散に最適なリブ形状やその寸法、背後壁面形状」は、検討した18種類のリブ壁面形状の中では「直径90mmの円形のリブの方が望ましい」、また、「背後壁面は斜めが望ましい」と言えよう。しかし、今回はリブの大きさとしては3種類だけで検討を行ったため、より望ましい寸法やリブ間の距離などについても今後さらなる検討が必要と思われる。

また、本研究で得られた結果はリブ形状壁面の一部を取り出して検討したものであり、実際にホールに設置された場合には、ホールそのものの形状や客席、人の影響などにより拡散効果が変わる可能性がある。より現実に近い想定で評価を行うことも今後の課題としたい。
参考文献

(1) 土屋裕造、李孝振、佐久間哲哉、“模型残響室を用いたランダム入射乱反射率の測定 その2
－各種周期構造の拡散性－”、音響学会秋季研究発表会講演論文集、1179-1180、2008 年 9 月
(2) 佐久間哲哉、“壁面形状の拡散性解析”、音響技術、139、14-19、2007 年 9 月
(3) 河井康人、“境界要素法における音場解析”、関西大学工業技術研究所技苑、101、25-33、
1999 年 12 月