立体型 MPP 空間吸音体の特性予測

関西大学 環境都市工学部 建築学科

建築環境工学第 I 研究室 音ゼミ

建 13-83 濵口 修一

指導教員 豊田 政弘

目次

1	は	じめに1
	1.1	研究背景1
	1.2	研究目的2
2 理論式		論式
	2.1	境界要素法
	2.2	境界積分方程式
	2.3	MPP のアドミッタンス8
	2.4	法線微分型積分方程式9
3 CMSA の解析結果と考察		ISA の解析結果と考察11
	3.1	周の長さが1mのCMSA11
	3.2	周の長さが 2 m の CMSA13
4 RMSA の解析結果と考察		
	4.1	周の長さが1 mの RMSA15
	4.2	周の長さが 2 mの RMSA17
5	おえ	と りに21
参考文献		

1 はじめに

1.1 研究背景

MPP (Microperforated Panel)とは、厚さ1 mm以下の薄板、膜などに直径1 mm以下、開 孔率 1%程度の微細孔を開けた微細穿孔版のことをいい、通常、背後に空気層を設けて、 Helmholtz 型吸音機構を構成することにより吸音を生ずる。MPP は、繊維系多孔質吸音材 料のもつ衛生面、環境面、および、デザイン面での問題点を解決する次世代吸音材として、 Maa[1]によって提案されて以来、多数の研究が行われており、広く注目を集めている。

海外では、壁や天井に利用されているが、国内では、消防法によって建材としての利用 が規制されている。そこで、吸音パーティションとして利用することが提案され、その例 としては、MPPを2重に重ね合わせた DLMPP (Double-leaf MPP)[2,3]、3重に重ねた TLMPP (Triple-leaf MPP)[4]がある。しかし、これらは使いづらく、もっと気軽に利用するため、Fig. 1のような、CMSA (cylindrical MPP space sound absorber)や RMSA (rectangular MPP space sound absorber)といった、立体型 MPP が提案された[5,6]。こういった形状にすることで、 天井からつるしたり、机やいすの脚の部分にまきつけたり、インテリアとして配置するだ けで吸音体としての役割を果たすことができる。

Fig. 1 3次元の CMSA と RMSA

1.2 研究目的

豊田らの研究[7]では、2次元境界要素法 (Boundary Element Method: BEM)を用いて立体型 MPP の吸音特性の予測を試みている。しかし、CMSA や RMSA の周の長さが大きい、 または、高さが低いときに計算モデルと実際の3次元形状との乖離が大きくなることや、 仰角方向の入射を考慮できないことから実測値よりも急激なピークやディップが生じるこ となど、2次元解析を用いることによる誤差要因が考えられる。本研究では、これらを3次 元境界要素法を用いることで解消する。

CMSAかRMSA、もしくは、その他の断面形状であったり、周の長さや高さといった立体型 MPP を形成する条件の中で、最も大きな吸音効果を示す条件を計算によって求めることで、実験を行うための時間とコストを削減することが本研究の目的である。

2 理論式

2.1 境界要素法

境界要素法とは、基本式として境界積分方程式を選び、積分領域の要素分割を介して数 値解析する手法である。有限要素法 (Finite Element Method: FEM)が未知数を対象領域全体 にとるのに対し、境界要素法は境界上にのみに未知数をとる。それにより、有限要素法に 比べると計算に必要なメモリ量が少なくすむという利点がある。

大気圧からの微小な圧力変動である音波は、粘性を無視した場合、c を音速 φ を速度ポ テンシャルとして、波動方程式

$$\nabla^2 \varphi = \frac{1}{c} \frac{\partial \varphi}{\partial t} \tag{1}$$

により表される。速度ポテンシャル φ と音圧pおよび粒子速度vは、 ρ を空気の密度として

$$p = \rho \frac{\partial \varphi}{\partial t} \tag{2}$$

$$v = -grad\,\varphi\tag{3}$$

により関係づけられる。*p*, *v*も波動方程式を満足する。

角周波数 ω の周期的変化の場合、速度ポテンシャルを $\varphi = \Phi \exp(-i\omega t)$ とおき時間項を除いて表すと、空気中では $k (= \omega / c = 2\pi / \lambda)$ を波数、 λ を波長として

$$\nabla^2 \Phi + k^2 \Phi = 0 \tag{4}$$

$$p = i\omega\rho\Phi = ik\rho c\Phi \tag{5}$$

$$v = -grad\Phi \tag{6}$$

と表せる。式(4)は Helmholtz の方程式と呼ばれている。

自由空間中の一点 q に置かれた強さ 1 の点音源(流体の流出入量が $-\exp(-i\omega t)$)による 点 p での速度ポテンシャルを $G(p,q) \exp(-i\omega t)$ としたとき、G を基本解といい、 δ をデルタ 関数とすると、3 次元の空気中では

$$\nabla^2 G + k^2 G = -\delta(q - p) \tag{7}$$

を満足し、 |q-p| = |r| = rとして

$$G(p,q) = \frac{\exp(ikr)}{4\pi r}$$
(8)

となる。

線形の常微分、または、偏微分方程式で記述される系にデルタ関数入力があるとき、境 界条件も含めた系の他の点における応答を表す関数を一般に Green 関数という。したがっ て、式(8)は Helmholtz の方程式に対する Green 関数であり、境界要素法では通常自由空間 におけるこれらの Green 関数が基本解として用いられる。

2.2 境界積分方程式

Fig. 2 領域Ω₁に対する Green の公式の適用
s: 点音源, p: 音源, Ω₂: 物体(表面), n: 内向き法線

Fig. 2 のように閉鎖領域 Ω_1 に対して法線 n を内向きにとり、点音源を s、受音点を p、 それらを中心とする半径 ε の小球を σ_s , σ_p 、表面 A の物体を Ω_2 として Green 関数の公式

$$-\int_{\Omega} (f\nabla^2 g - g\nabla^2 f) dV = \int_{\partial\Omega} \left(f \frac{\partial g}{\partial n} - \frac{\partial f}{\partial n} g \right) dS$$
(9)

を適用する(Ω_1 の境界は $\partial \Omega_1 = \Sigma + \sigma_s + \sigma_p + \Gamma$)。ただし、 $\int dV$, $\int dS$ はそれぞれ体積 分、面積分(2次元の場合はそれぞれの面積分、縁辺に沿った線積分)を表す。ここで、関 数 f 及び g に Helmholtz の方程式を満たす関数として、速度ポテンシャル φ 、及び、自由空 間における基本解 G を代入すれば、 σ_s に対する積分は直接波 $\lim_{\epsilon \to 0} \int dS = \Phi_D(p,s)$ 、 σ_p に対 する積分は Ω_1 の内部点に対して $\lim_{\epsilon \to 0} \int dS = - \Phi(p)$ 、また、境界 A、 Σ 上の点では、C(p)を 点 p を中心とする小球 σ_p が領域 Ω_1 に含まれる割合として $\lim_{\epsilon \to 0} \int dS = -C(p)\Phi(p)$ となるから

$$\Phi_{D}(p,s) + \int_{F+\Sigma} \left\{ \Phi(q) \frac{\partial G(p,q)}{\partial n_{q}} - \frac{\partial \Phi(q)}{\partial n_{q}} G(p,q) \right\} dS = \begin{cases} \Phi(p) & (p \in \Omega_{1}) & (10) \\ C(p)\Phi(p) & (p \in F, \Sigma) & (11) \\ 0 & (p \notin \Omega_{1}) & (12) \end{cases}$$

が成り立つ。式(12)は境界上のポテンシャルΦを未知数とする積分方程式であり、C(p)は滑らかな境界上では半球(半円)の積分となるから 1/2 となる。

物体の散乱等の外部問題では、 $\Sigma \varepsilon p \varepsilon$ 中心とする半径 ∞ の球面とし、Sommerfeld の有界、放射条件

$$\left| r\Phi \right| < K, \quad r\left\{ \frac{\partial\Phi}{\partial r} - ik\Phi \right\} \to 0$$
 (13)

を仮定して、無限遠 Σ からの寄与を無視し、積分領域をAのみとして取り扱う。また、室内の音場等の内部問題では有限の閉曲面 Σ での境界づけられた内部領域を扱う。

式(10)~式(12)の積分の第1項は2重層ポテンシャル、第2項は1重層ポテンシャルと 呼ばれている。2重層はその分布の密度がポテンシャル $\Phi(q)$ で、指向性は

$$\frac{\partial G(p,q)}{\partial n_q} = \frac{\exp(ikr)}{4\pi r^2} (ikr - 1)\cos(r,n_q)$$
(14)

となる。 $\cos(r,n_q)$ はベクトル r と n_q のなす角の余弦を表すから、双指向性(8字形)であ

る。1 重層ポテンシャルはその分布の密度が法線粒子速度 $\frac{\partial \Phi(q)}{\partial n_q}$ で無指向性である。これ

らの2種類の2次音源分布の影響により領域Ω1内のΦの分布が決まる。

面上のポテンシャルは与えられた境界条件を代入して得られる積分方程式(11)を解いて 求めなければならない。面上の Φ , $\frac{\partial \Phi}{\partial n}$ の分布が求まると、式(10)により空間の音場が計算

できる。積分方程式(11)は BF (Basic From)と呼ばれることがある。

境界積分方程式(11)には2つの未知数が含まれているため、この式だけでは解を得るこ

とができない。このため、局所作用 (locally reaction)の近似がしばしば用いられる。すなわ ち、吸音性の境界における粒子速度はその点に入射した音圧によってのみ決まるという近 似である。これに対し、入射音が吸音材中を伝搬し、ほかの境界面での粒子速度生成に寄 与する場合は拡張作用 (extended reaction)と呼ばれる。この場合には、材料中の波動伝搬に 関する式をもう1つ導入し、連立させて解く必要がある。

局所作用が仮定できる境界では、境界面のアドミッタンス(インピーダンスの逆数)を Aとすると

$$\frac{\partial \Phi}{\partial n} = ikA\Phi \tag{15}$$

となるが、実際の建築材料表面については近似が可能かどうかを十分検討して用いなけれ ばならない。なお、境界面が音響的に剛な場合には粒子速度は 0 であるから $\frac{\partial \Phi}{\partial n} = 0$ とな

り、取り扱いは簡単になる。

2.3 MPP のアドミッタンス

MPPのアドミッタンスAはMaaの近似式[1]によって次のように求められる。

$$A = \rho_0 c_0 \left(\frac{1}{Z_1} + \frac{1}{Z_2} \right)$$
 (16)

$$Z_1 = \frac{1}{P} (Z_{resist} + Z_{react}) \tag{17}$$

$$Z_{resist} = \frac{8\eta h}{(d/2)^2} \left(\sqrt{1 + \frac{X^2}{32}} + \frac{\sqrt{2}dX}{8h} \right)$$
(18)

$$Z_{react} = i\rho_0 \omega h \left(1 + \frac{1}{\sqrt{9 + (X^2/2)}} + \frac{0.85d}{h} \right)$$
(19)

$$X = \frac{d}{2} \sqrt{\frac{\rho_0 \omega}{\eta}}$$
(20)

$$Z_2 = -i\omega\rho h \tag{21}$$

ここで、*ρ*₀, *c*₀, *η* はそれぞれ、空気密度、音速、空気の粘性係数を表している。また、*P*, *h*, *ph*, *d* はそれぞれ、MPPの開孔率、板厚、面密度、孔径を表している。

Fig.3. MPP 面

Fig. 3 で示すように、無限空間 Ω にある MPP 面 A を考える。ここで、音源を P_s 、受音点 を P、音源側の法線を n_+ 、回折側の法線を n_- 、積分変数となる位置ベクトルを Q、音源側 の速度ポテンシャルを φ_+ 、回折側のポテンシャルを φ_- とし、Helmholtz-Kirchhoff の積分公 式を用いると

$$\varphi(P) = \varphi_D(P) + \iint_A \left\{ \varphi_+(Q) \frac{\partial G}{\partial n_+} - \frac{\partial \varphi_+(Q)}{\partial n_+} G \right\} dS + \iint_A \left\{ \varphi_-(Q) \frac{\partial G}{\partial n_-} - \frac{\partial \varphi_-(Q)}{\partial n_-} G \right\} dS$$
(22)

が得られる。ただし、 φ_D は P_s からの直接音を表し、基本解(Green 関数の主要解)は、

$$G = \frac{e^{ikr}}{4\pi r} \ \mathfrak{C} \ \mathfrak{H} \ \mathfrak{Z}_{\circ}$$

ここで、MPP の両側の粒子速度は等しく、 $\frac{\partial \varphi_+}{\partial n_+} = -\frac{\partial \varphi_-}{\partial n_-} = v, n_+ = -n_- = n$ であるから、

式(22)の右辺積分第2項は消え、

$$\varphi(P) = \varphi_D(P) + \iint_A \widetilde{\varphi}(Q) \frac{\partial G}{\partial n} dS$$
(23)

が得られる。ただし、 $\widetilde{\varphi} = \varphi_+ - \varphi_-$ とする。

次に、未知数 $\tilde{\varphi}$ を求めるために、法線微分型の方程式を導入する。式(23)を P に関して n_P 方向で微分すれば、

$$\frac{\partial \varphi(P)}{\partial n_P} = \frac{\partial \varphi_D(P)}{\partial n_P} + \iint_A \widetilde{\varphi}(Q) \frac{\partial^2 G}{\partial n_P \partial n} dS$$
(24)

が得られる。ここで、境界面のインピーダンス(アドミッタンスの逆数)を Z_r とすると、 $P \in \Omega, P \in A$ での法線微分型方程式である

$$\frac{\partial \varphi_{D}(P)}{\partial n_{P}} + \iint_{A} \widetilde{\varphi}(Q) \frac{\partial^{2} G(P,Q)}{\partial n_{P} \partial n} dS = \begin{cases} \frac{\partial \varphi}{\partial n}, (P \in \Omega) \\ -\frac{i \omega \rho \widetilde{\varphi}(P)}{Z_{r}}, (P \in A) \end{cases}$$
(25)

が得られる。

3 CMSA の解析結果と考察

3.1 周の長さが 1 m の CMSA

本研究では、MPPの条件をすべて、孔径 0.5 mm、厚さ 0.5 mm、開孔率 0.785%、面密度 0.6 kg/m² と設定する。

Fig. 4 周の長さ1mの CMSA を床に置いた時の実験結果と解析結果

Fig. 4 は周の長さが1m(直径が1/π[m])、高さが1mのCMSAを床に置いた時の実験 結果と2次元、3次元境界要素法を用いた解析結果を表している。3次元解析結果では、2 次元解析結果の630 Hzから800 Hzで見られたピークディップの誤差が解消している。こ れは、仰角方向の入射を考慮した解析を行うことで、MPP内側の反射音の影響を加味した からである。しかし、100 Hzから1600 Hzにおいて3次元解析結果が実験結果や2次元解 析結果よりも小さい吸音率をとっている。これは、吸音率を計算する際の見かけの入射エ ネルギーの値が異なるからであると考えられる。3次元解析では吸音率1の1m²の面が示 す吸音力を基準とした計算を行ったのに対し、2次元解析ではCMSAの見かけの面積に入 射するエネルギーを基準とした計算を行っている。実験結果と比較しても吸音率が下回っ ていることから、3次元解析においても見かけの面積を用いた解析の検討が必要である。

Fig. 5 高さが 0.5 m、1 m、2 m の CMSA

Fig. 5 は高さがそれぞれ 0.5 m、1 m、2 m、周の長さが 1 m の CMSA の解析結果を表し ている。これらの高さは実用性を考慮し設定したものである。これにより、吸音率が CMSA の高さに依存しないことがわかる。高さを倍にすると吸音力は大きくなるが、吸音率はそ れを表面積で除するため、その結果、高さが大きくなっても吸音率はそれほど大きくは変 化しない。しかし、それぞれの高さの CMSA の吸音率のピークディップを示す周波数にも ずれがないことから、CMSA 内部における軸方向の共鳴はあまり起こっていないと考えら れる。

Fig.6 周の長さ2mのCMSAを床に置いた時の実験結果と解析結果

Fig. 6 は周の長さが 2 m (直径が 2 / π [m])、高さが 1 m の CMSA を床に置いた時の実験 結果と 2 次元、3 次元境界要素法を用いた解析結果を表している。周の長さが 1 m のとき と同様に、100 Hz から 800 Hz において 3 次元解析結果が実験結果や 2 次元解析結果より も小さい吸音率をとっており、その原因も周の長さが 1 m の CMSA のときに述べたものと 同じであると考えられる。

Fig.7 周の長さが 0.5 m、1 m、2 m の CMSA

Fig. 7 は周の長さがそれぞれ 0.5 m、1 m、2 m、高さが 1 m の CMSA の解析結果を表し ている。これらの周の長さは実用性を考慮し設定したものである。ここでは周の長さが大 きくなるほど広帯域にわたって安定した吸音率をとり、100 Hz から 5000 Hz の範囲の平均 値も大きくなるという結果が得られた。これは、周の長さが大きくなるとピークは低く、 また、共鳴周波数も低くなるからであり、低い周波数の吸音率が大きい分、平均吸音率も 大きくなるからである。また、周の長さが 0.5 m の CMSA が 800 Hz と 1600 Hz において大 きい吸音率を示しているが、これはそれらが共鳴周波数であるからと考えられる。

4 RMSA の解析結果と考察

4.1 周の長さが1 mの RMSA

Fig.8 周の長さ1mのRMSAを床に置いた時の実験結果と解析結果

Fig.8は周の長さが1m(一辺の長さが0.25m)、高さが1mのRMSAを床に置いた時の 実験結果と2次元、3次元境界要素法を用いた解析結果を表している。3次元境界要素法 を用いた解析結果が、いずれの周波数においても2次元境界要素法を用いた解析結果同様、 実験値に近い値をとっている。CMSAに比べてRMSAの方が実験結果に近い解析結果が得 られた理由については、今後さらなる検討が必要である。

Fig.9 高さが 0.5 m、1 m、2 m の RMSA

Fig. 9 は高さがそれぞれ 0.5 m、1 m、2 m、周の長さが1 mの RMSA の解析結果を表している。これらの高さは実用性を考慮し設定したものである。これにより、吸音率が RMSAの高さに依存しないことがわかる。これについては、CMSA の高さを変化させた時と同じことが言える (Fig. 5)。

Fig. 10 周の長さ2mの RMSA を床に置いた時の実験結果と解析結果

Fig. 10 は周の長さが 2 m (一辺の長さが 0.50 m)、高さが 1 m の RMSA を床に置いた時の実験結果と 2 次元、3 次元境界要素法を用いた解析結果を表している。こちらも周の長さが 1 m の RMSA と同様、3 次元境界要素法を用いた解析結果がいずれの周波数においても実験値に近い値をとっている。

Fig. 11 周の長さが 0.5 m、1 m、2 m の RMSA

Fig. 11 は周の長さがそれぞれ 0.5 m、1 m、2 m、高さが 1 m の RMSA の解析結果を表し ている。これらの周の長さは実用性を考慮し設定したものである。ここでは周の長さが大 きくなるほど広帯域にわたって安定した吸音率をとり、100 Hz から 5000 Hz の範囲の平均 値も大きくなるという結果が得られた。これは、CMSA の周の長さを変化させた解析と同 様、周の長さが大きくなるとピークは低く、また、共鳴周波数も低くなるからであり、低 い周波数の吸音率が大きい分、平均吸音率も大きくなるからである。また、周の長さが 0.5m の RMSA が 800 Hz において大きい吸音率を示しているが、これはそれが共鳴周波数であ るからと考えられる。

Fig. 12 周の長さ1mの CMSA と RMSA の解析結果

Fig. 13 音の入射角ごとの周の長さ1mの CMSA と RMSA の解析結果

Fig. 12 は周の長さが1 m の CMSA と RMSA を対象とした 3 次元解析結果を比較してい る。どちらも同じ高さ1 m であるが、100 Hz から 500 Hz の範囲において RMSA の吸音率 が CMSA の値を下回っている。これは CMSA が方位角方向入射角の影響を受けないのに 対し、RMSA がその影響を受けるからであると考えられる。Fig. 13 は周の長さが 1 m の CMSA と方位角方向入射角がそれぞれ 0°、22°、45°の RMSA の 3 次元解析結果を比較 している。800 Hz から 5000 Hz の範囲においては、CMSA よりも音の入射角が 0°、つま り、垂直入射する RMSA の方が平均吸音率は大きいが、斜め入射する RMSA の平均吸音 率は CMSA よりも小さい。これは、MPP が一般的に、斜め入射する音よりも垂直入射する 音の方がエネルギーを多く減衰するという性能をもっているからである。よって、全体的 な RMSA の吸音性能は CMSA よりも劣ると考えられる。

5 おわりに

本研究では、2次元境界要素法を用いた立体型 MPP の解析において、CMSA や RMSA の 周の長さが大きい、または、高さが低いときに計算モデルと実際の3次元形状との乖離が 大きくなることや、仰角方向の入射を考慮できないことから実測値よりも急激なピークや ディップが生じることなど、2次元解析を用いることによる誤差要因を3次元要素法で解 消し、最も大きい吸音率を示す立体型 MPP を計算によって求めることを目的とした。今回 の解析で以下のことがわかった。

- ・CMSA / RMSA の吸音率はそれぞれの高さには依存しない。
- ・CMSA/RMSAの周の長さが大きい方が広帯域にわたって安定した吸音率をとり、100 Hz
 から 5000 Hz の範囲の平均値は大きくなる。
- ・100 Hz から 500 Hz の範囲においては RMSA よりも CMSA の方が大きい吸音率をとる。

今後は立体型 MPP の孔径、厚さ、開孔率、面密度の条件を見直すことによる性能の向上 を検討する必要があると考えられる。

参考文献

- [1] Maa DY. Theory and design of microperforated panel sound-absorbing constructions. Sci Sin (1975) 17:55-71.
- [2] Sakagami K, Morimoto M, Koike W. A numerical study of double-leafmicroperforated panel absorbers. Appl Acoust (2006) 67:609-19.
- [3] Nakamori T, Morimoto M, Yairi M. Double-leaf microperforated panel spaceabsorbers: a revised theory and analysis. Appl Acoust (2009) 70:703-9.
- [4] Sakagami K, Yairi M, Morimoto M. Multiple-leaf sound absorbers with microperforated panels: an overview. Acoust Australia (2010) 38:64-9.
- [5] Sakagami K, Oshitani T, Yairi M, Toyoda E, Morimoto M. An experimental study on a cylindrical microperforated panel space sound absorber. Noise Control Eng J (2012) 60:22-8.
- [6] Sakagami K, Yairi M, Toyoda E, Toyoda M. An experimental study on the sound absorption of three-dimensional MPP space sound absorbers: rectangular MPP space sound absorbers (RMSA). Acoust Australia (2013) 41:156-9.
- [7] Toyoda M, Kobatake S, Sakagami K. Numerical analyses of the sound absorption of threedimensional MPP space sound absorbers. Appl Acoust (2014) 79:69-74.

謝辞

最後に、本研究を進めるにあたりご指導・ご鞭撻頂きました豊田政弘准教授、河井康人 教授にこの場をお借り致しまして心より深く御礼申し上げます。また、ともに研究に励み ました建築環境工学第 I 研究室の皆様にも感謝致しております。有難うございました。