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scaffold and create the periodic crossovers. Staples reverse direction
at these crossovers; thus crossovers are antiparallel, a stable configu-
ration well characterized in DNA nanostructures16. Note that the
crossovers in Fig. 1c are drawn somewhatmisleadingly, in that single-
stranded regions appear to span the inter-helix gap even though the
design leaves no bases unpaired. In the assembled structures, helices
are likely to bend gently to meet at crossovers so that only a single
phosphate from each backbone occurs in the gap (as ref. 16 suggests
for similar structures). Such small-angle bending is not expected to
greatly affect the width of DNA origami (see also Supplementary
Note S2).
Theminimization and balancing of twist strain between crossovers

is complicated by the non-integer number of base pairs per half-turn
(5.25 in standard B-DNA) and the asymmetric nature of the helix (it
has major and minor grooves). Therefore, to balance the strain15

caused by representing 1.5 turns with 16 bp, periodic crossovers are
arranged with a glide symmetry, namely that the minor groove faces
alternating directions in alternating columns of periodic crossovers
(see Fig. 1d, especially cross-sections 1 and 2). Scaffold crossovers are
not balanced in this way. Thus in the fourth step, the twist of scaffold
crossovers is calculated and their position is changed (typically by a
single bp) to minimize strain; staple sequences are recomputed
accordingly. Along seams and some edges the minor groove angle
(1508) places scaffold crossovers in tension with adjacent periodic
crossovers (Fig. 1d, cross-section 2); such situations are left
unchanged.

Wherever two staples meet there is a nick in the backbone. Nicks
occur on the top and bottom faces of the helices, as depicted in
Fig. 1d. In the final step, to give the staples larger binding domains
with the scaffold (in order to achieve higher binding specificity and
higher binding energy which results in higher melting temperatures),
pairs of adjacent staples aremerged across nicks to yield fewer, longer,
staples (Fig. 1e). To strengthen a seam, an additional pattern of
breaks and merges may be imposed to yield staples that cross the
seam; a seam spanned by staples is termed ‘bridged’. The pattern of
merges is not unique; different choices yield different final patterns of
nicks and staples. All merge patterns create the same shape but, as
shown later, the merge pattern dictates the type of grid underlying
any pixel pattern later applied to the shape.

Folding M13mp18 genomic DNA into shapes
To test the method, circular genomic DNA from the virus M13mp18
was chosen as the scaffold. Its naturally single-stranded 7,249-nt
sequence was examined for secondary structure, and a hairpin with a
20-bp stemwas found.Whether staples could bind at this hairpinwas
unknown, so a 73-nt region containing it was avoided. When a linear
scaffold was required, M13mp18 was cut (in the 73-nt region) by
digestion with BsrBI restriction enzyme. While 7,176 nt remained
available for folding, most designs did not fold all 7,176 nt; short
(#25 nt) ‘remainder strands’ were added to complement unused
sequence. In general, a 100-fold excess of 200–250 staple and
remainder strands were mixed with scaffold and annealed from

Figure 2 | DNA origami shapes. Top row, folding paths. a, square;
b, rectangle; c, star; d, disk with three holes; e, triangle with rectangular
domains; f, sharp triangle with trapezoidal domains and bridges between
them (red lines in inset). Dangling curves and loops represent unfolded
sequence. Second row from top, diagrams showing the bend of helices at
crossovers (where helices touch) and away from crossovers (where helices
bend apart). Colour indicates the base-pair index along the folding path; red

is the 1st base, purple the 7,000th. Bottom two rows, AFM images. White
lines and arrows indicate blunt-end stacking. White brackets in a mark the
height of an unstretched square and that of a square stretched vertically (by a
factor.1.5) into an hourglass. White features in f are hairpins; the triangle
is labelled as in Fig. 3k but lies face down. All images and panels without scale
bars are the same size, 165 nm £ 165 nm. Scale bars for lower AFM images:
b, 1 mm; c–f, 100 nm.
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体液で瞬時に固まるDNAゲル →薬剤の徐放デバイスや 
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