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ABSTRACT: The applicability of three-dimensional (3D) laser scanners, which are capable of capturing the 

surface shapes of objects as "point cloud" sets, has recently been expanded to include examining, re-designing, 

and preserving existing constructions, as well as collecting on-site information for building information modeling 

(BIM). However, one of the difficulties involved when collecting complete scans of outdoor constructions is 

avoiding occlusions. This means, in order to cover the entire surface of a construction, it is normally necessary to 

scan it from multiple viewpoints. On the other hand, structure from motion (SFM) is a powerful image-based 

modeling technique that can be used to recover camera parameters, pose estimates, and create sparse 3D scene 

geometry from image sequences. Utilizing the mobility of unmanned aerial vehicles (UAVs) equipped with 

high-resolution cameras, it is possible to compensate for unscanned regions in an outdoor target site and combine 

the obtained information with multi-view stereo (MVS) process data in order to produce dense surface meshes 

from the SFM output. In this research, we propose a method for correlating laser scanner point cloud data and 

SFM data in order to integrate them. Herein, we employ SFM data obtained using UAV-mounted digital camera 

imagery, as well as an images taken by the laser scanner. Usually, laser scanners are equipped and calibrated with 

color digital cameras in order to capture color information corresponding to scanned points. This feature allows 

the scanner viewpoint to be integrated into the 3D geometry reconstructed by SFM. More specifically, the 3D 

geometry produced by the SFM and the laser-scanned data from scanner position viewpoints are overlaid upon 

each other, after which, selecting the proper number of points from the scanner view via random sample consensus 

(RANSAC) permits the proper corresponding points to be found and fit in place automatically. In this study, we 

conducted an experiment using a UAV (DJI Phantom II) and a laser scanner (Riegl LMS-Z420i) equipped with a 

high-resolution camera, and found that the resultant 3D data set consisting of complementarily scanner point 

cloud data and SFM process data covered the entire surface shape of the scene. 
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1. INTRODUCTION 

Laser range scanners are three-dimensional (3D) surface imaging systems that can be used to produce consistent 

and accurate assessments of the vast spatial conditions required by various kinds of construction applications. 

These include investigations into construction process management (Shih et al. 2004, 2006), monitoring as-built 

infrastructures (Miller et al. 2008), and so forth. Since most of these applications require timely spatial 



 

 

information delivery, collecting the needed information within a limited amount of time is critical for numerous 

field applications. 

Furthermore, as developments of both long-range and vehicle-mounted laser scanners advance, such precise 

active 3D recording has also come to be effectively used in post-disaster reconstruction work (Watson et al. 

2011). On the other hand, due to adverse field conditions at disaster sites, physical access and scanner setup is 

often limited and difficult. In such cases, scanning the entire shape of a scene is often labor intensive, or may 

even be impossible because multiple scanning from different viewpoints is often necessary to complement the 

limited or line-of-sight visibility available from each viewpoint. In such cases, using an unmanned aerial vehicle 

(UAV), often called a drone, equipped with a digital camera provides an effective alternate strategy for meeting 

these challenges, particularly since drone flight performance levels and digital cameras image resolution levels 

have advanced remarkably in recent years. 

Additionally, in the computer vision field, 3D reconstruction techniques that use enhanced structure from motion 

(SFM) techniques can now be easily carried out in combination with those downsized UAVs with small-sized 

camera. Recently, SFM based on large unorganized photo collections has been successfully used to facilitate 3D 

reconstruction work. For example, VisualSFM (Wu 2012) achieves O(n) computation cost in practice for n 

images, while the most commonly known cost for incremental SFM was O(n4) (Snavely 2006). Since the use of 

very large photo collections is now acceptable even in chaotic post-disaster situations, small UAVs can examine 

damaged areas from various distances and viewpoints and gather useful images and/or video footage, not only 

for reviewing the recorded imagery but also for reconstructing the pre-disaster 3D geometry of the site. 

Such 3D information can then be used to facilitate emergency disaster control measures and disaster recovery 

efforts. However, unlike laser scanner data, SFM data are based on a passive type of 3D imaging measurement 

 

Fig. 1: Diagram depicting the proposed method. A Photo taken by the laser scanner’s calibrated camera is 

combined with photos taken by a UAV for SFM. The generated 3D mesh contains the laser scanner camera 

viewpoint, which allows valid corresponding points between two data sets to be found easily. 

 



 

that does not guarantee the absolute scale in nature, and instead depends on the distribution of the natural feature 

points in the appearance of a scene, which cannot be controlled. As a result, the reconstruction sometimes 

contains only sparse data points and poor natural features may produce unexpected artifacts, distortions, and 

noise. 

2. METHOD 

Conventional methods for registering multiple point cloud data sets are commonly based in the iterative closest 

point (ICP) algorithm (Besl et al. 1992) and are available for 3D data and designing post-processing in numerous 

software applications. This algorithm performs difference minimization between point cloud pairs comprising 

the reference target and the source to be transformed in order to best match the reference. Essentially, the 

algorithm solves unconstrained optimization problems whose results are sensitive to the initial state, thereby 

facilitating the iteration start needed to find correspondences between point sets and transform the source points 

until the best fit is obtained for all points. 

When applying simple ICP-based registration to our problem, the initial state is determined by selecting points 

or mesh vertices as initial correspondences, or by placing the source data set close to the reference data set. This 

setup is basically manual work, and must take into consideration the acquisition process and characteristic 

differences between the 3D data sets. More specifically, one is from a laser scanner whose points are aligned on 

the scan lines, while the other is from an SFM whose points are totally unorganized and may contain huge 

distortions, noise, and sparse regions. Without this consideration, registration does not work well, even when 

manual setup is used. This paper addresses this issue by focusing on the reconstructed camera view by SFM. 

As shown in Fig. 1, we present a method that can be used to integrate point cloud data from a laser scanner with 

mesh data generated from SFM. The key idea here is to utilize the photo image taken by the color camera 

incorporated into many of the laser scanners currently in production. Such cameras are intended to produce 

pre-calibrated colored point cloud data that allow the 3D coordinates of the measured point data obtained by the 

laser ranging sensor to be associated with the captured color pixels. This calibration is done by determining the 

intrinsic camera parameters used to project 3D coordinates onto a two-dimensional (2D) image plane and using 

extrinsic camera parameters to perform the scaling, translation, and rotation needed transform the 3D coordinates 

between the laser scanner and the camera image sensor data. 

SFM reconstructs 3D geometry by identifying corresponding natural feature points in multiple photo images 

based on their shooting positions and orientations. More specifically, in the SFM process, photo imagery taken 

by the camera incorporated into the laser scanner is applied to the SFM input image collection, which consists of 

numerous images taken by a UAV equipped with a digital camera. From that point, the shooting positions and 

orientations of both the laser scanner and UAV cameras can be reconstructed in an identical 3D coordinate 

system determined by SFM. 

Since the scanner camera can view both the reconstructed SFM output 3D scene and the point cloud scanned by 

the laser scanner on an identical image plane, re-projecting the 3D points reconstructed by SFM onto the 



 

 

scanner’s camera image permits the pixel position corresponding to 3D points in the scanner coordinates to be 

identified. Although SFM reconstructs only sparse 3D points, based on which the further multi-view stereo 

(MVS) process is able to generate dense vertices and meshes, using MVS output facilitates the identification of 

numerous corresponding pairs of 3D coordinates between the SFM and the laser scanner. 

Moussa et al. (2014) proposed a registration method for non-overlapping laser scanned data sets using SFM 

reconstruction that assumes the reconstructed camera parameters produced by SFM are accurate and useful for the 

determination of 3D-to-3D correspondences when registering non-overlapping laser scanned data. However, in 

practice, the SFM reconstruction precision depends significantly on the characteristics of the input image 

collection. Accordingly, we only use the SFM result for finding candidate correspondences of point pairs between 

the scanned point cloud and the reconstructed points produced by SFM. Re-projecting both 3D point sets on an 

identical image plane enables 3D-to-3D pair correspondences for different point set types to be determined in a 

stable manner. 

 

Fig. 2: Schematic concept of the proposed method. Pre-calibrated scanner camera imagery can be used as a 

medium for transforming SFM and laser scanner coordinate data by incorporating the imagery into the SFM 

process.  

3. Implementation 

3.1 Target scene 

Assuming that real-world target sites would often have adverse field conditions and complicated structures with 

numerous visual occlusions, we chose a 20-30-meter-square junkyard on the campus of Kansai University as a 

test site for our proposed method. In our experiments, we used an LMS-Z420i (Riegl Inc.) laser scanner, and a 

Phantom2 (DJI Inc.) UAV equipped with a GoPro HERO4 (Woodman Labs Inc.) digital camera. We began by 

scanning the site from two viewpoints with the laser scanner placed on the ground, and then flew the UAV at a 



 

comparatively low height of about 20 meters at the highest in a manner that ensured the aerial view would cover 

the entire site. 

 

Fig. 3: Portion of the photo collection, including photos taken by both the UAV and laser scanner cameras (left), 

and the result of the SFM process (right). 

 

3.2 Applying SFM 

A total of 133 images were selected for the SFM process. This image collection includes those taken by the 

scanner camera and captured frames from 4 minutes of video footage taken by the UAV camera. The SFM was 

produced using VisualSFM, and a further MVS process for creating dense mesh data was performed by 

CMP-MVS (Jancosek et al. 2012). From these results, 200 million vertices were generated. Moussa addresses the 

registration of non-overlapping laser scanned data sets using SFM reconstruction (Moussa et al. 2014). 

 

3.3 Selecting Corresponding Points 

The scanner camera image plane is associated with the 3D coordinates of the scanned point cloud by using 

pre-calibrated intrinsic and extrinsic camera parameters. The same image is used in the SFM process, and its 

estimated viewpoint and orientation results can be used as the extrinsic camera parameters in the SFM 

coordinate system. From these results, as shown in Fig. 4, corresponding points can be specified in both the 

scanner point cloud and the SFM reconstructed meshes for each pixel on the image plane. At this point, because 

the points or reconstructed mesh vertices are unorganized, and thus not aligned on the image plain pixel grid, we 

use mouse picking to select interest points on the mesh surface produced by SFM. 

Mouse picking calculates the ray trajectory from the camera viewpoint toward the mesh surface via pixel 

selected by mouse, based on the camera parameters. Next, the intersection between the ray and the closest 

surface from the camera viewpoint is found. Since the intersection point on the mesh polygon surface will be 

picked up even if the ray does not hit any vertices, it is supposed that point sampling with linear interpolation has 



 

 

been achieved. The laser scanned point counterpart is then associated with the mouse-picked point. 

 

 

 

Fig. 4: Point cloud data view (left) and reconstructed meshes view produced by a SFM and MVS process from 

an identical viewpoint obtained via the scanner camera. Corresponding points can be found at the same pixel 

position on the image. 

 

3.4 Registration 

Since scan data have precise dimensions and organized points, we set the scan data as the reference and the 

reconstructed data produced by SFM as the source data. Registration is accomplished by finding a scaling, 

translation, and rotation transform that can match the source data to the reference data. By mouse picking n times, 

candidate corresponding points set in the source data are given as X ൌ ሼݔ௜ሽ௜ୀଵ
௡  ,and in the reference data as 

Y ൌ ሼݕ௜ሽ௜ୀଵ
௡ ⊂ ܴଷ. Using unknown rotation and translation parameters ሺܴ, ሻݐ ∈ SEሺ3ሻ and scaling parameter s 

gives the following relation: 

௜ݕ ൌ ௜ݔܴݏ ൅  .ݐ

In order to estimate the best parameters R, t, s from given matrices X, Y ∈ ܴଷൈ௡, we minimize the objective 

function  

min
ሺோ,௧ሻ∈ௌாሺଷሻ

∑ ௜ݕ‖ െ ሺݔܴݏ௜ ൅ ሻ‖ଶ௡ݐ
௜ୀଵ , 

where ݔ௜, ,௜ are aligned columns of Xݕ Y, respectively. The optimization can then be expressed as follows: 

min
ሺோ,௧ሻ∈ௌாሺଷሻ

∑ ‖ ௜ܻ െ ሺܴݏ ௜ܺ ൅ ሻ‖ி்ܫݐ
ଶହ

௜ୀଵ , 



 

where ܫ ൌ 	 ሺ1, 1, ⋯ ,1ሻ் ∈ ܴ௡ and ‖∙‖ி denotes the Frobenius norm, which is defined ‖ܣ‖ி ൌ 	∑ ܽ௜௝ଶ௜௝  for a 

matrix A ൌ	 ൫ܽ௜௝൯. If we let the centroids (mass centers) of X, Y be ̅ݔ ൌ ,݊/ܫܺ	 തݕ ൌ  then following ,݊/ܫܻ		

holds: 

തݕ ൌ ݔܴ̅ݏ	 ൅ t 

Using ݔ′௜ ൌ ௜ݔ	 െ	 ,ݔ̅ ௜′ݕ		 ൌ ௜ݕ	 െ	ݕത, the translation t can be canceled and the unknown R is the optimal rotation 

matrix for following problem:  

min
ோ∈ௌாሺଷሻ

෍‖ܻᇱ െ ி‖′ܴܺݏ	
ଶ

ହ

௜ୀଵ
 

where Xᇱ ൌ 	 ሺݔ′ଵ, ⋯,ଶ′ݔ , ,ହሻ′ݔ Yᇱ ൌ 	 ሺݕ′ଵ, ⋯,ଶ′ݕ , ହሻ′ݕ . Using the relation ‖ܣ‖ி ൌ trሺܣ்ܣሻ , the objective 

function can be written as follows (Arun 1987, Schönemann 1996): 

‖ܻᇱ െ ᇱ‖ிܴܺݏ	
ଶ  

ൌ ൫ሺܻᇱݎݐ െ ᇱሻ்ሺܻᇱܴܺݏ	 െ 	ᇱሻ൯ܴܺݏ	

ൌ trሺܻ′்ܻ′ሻ ൅ ሺܺ′்ܺሻݎݐଶݏ െ  ሺܻ′்ܴܺ′ሻݎݐݏ2

Since the first two terms are not related to minimization, the problem can be redefined as the following 

maximization: 

max
ோ

 .ሺܻ′்ܴܺ′ሻݎݐ

Let the singular value decomposition of ܺ′ܻ′் ∈ ܴଷൈଷ be ܺᇱܻ′் ൌ ܷΣ்ܸ, where Σ is a non-diagonal matrix 

and U, V ∈ ܱሺ3ሻ. Then the objective function can be rewritten as follows: 

൫ܻᇱ்ܴܺᇱ൯ݎݐ ൌ ሺܴܺᇱܸሻݎݐ ൌ ሺܴܷΣ்ܸሻݎݐ ൌ 	ሺ்ܸܴܷΣሻݎݐ

൑ trሺΣሻ. 

Eventually, when ்ܸܴܷ ൌ 	 ଷ, the objective function is maximized and the rotation is given by ෠ܴܫ ൌ ்ܸܷ. 

Then the scaling parameter s is given by the flowing equation: 

s ൌ 	
′்ܺ′ሺܻݎݐ തܴሻ

ሺܺ′்ܺ′ሻݎݐ
. 

After s and R are obtained, the translation can be calculated as t ൌ തݕ	 െ  .ݔܴ̅ݏ

In our experiment, we implemented a mouse-picking user interface to select ten points (pixels) on the scanner 

image view without performing any other data operations. Of these, three points are excluded as outliers by 

random sample consensus (RANSAC). In Fig. 5, the red dots are the selected points and the blue dots are the 

outliers. The registration result produced by integrating scanned points and SFM reconstructed meshes is shown 

in Fig. 6. The residual error of the registration was 0.149 m. When compared to the laser scanner 

root-mean-square (RMS), the residual is large due to noise in the meshes produced by SFM, as show in Fig. 7. 



 

 

This is especially prevalent on the ground surface, where less natural features are found in the image even 

though many roughly shaped artifacts are visible on the smooth surfaces. Despite this result, we found the 

correspondences works stably under the same view guarantee.  

 

Fig. 5: 3D data view from the scanner image. Both the scanned point cloud and the SFM/MVS reconstructed 

meshes can be selected from the same pixel section, which permits correspondences to be easily made via mouse 

picking. 

Fig. 6: Registration result. The white dots show the point cloud produced by the scanner and the colored dots are 

the SFM/MVS reconstruction. 

 



 

4. CONCLUSIONS 

This paper proposed a method for correlating the point cloud data obtained from a laser scanner and UAV camera 

imagery in order to integrate them together via SFM. More specifically, using a laser scanner equipped with a 

calibrated color digital camera, the scanner viewpoint is integrated into the 3D geometry reconstructed from UAV 

collected images via SFM. Then, the 3D geometry of both the SFM and the laser-scanned data are viewed from the 

scanner position viewpoints, which allows them to be overlaid upon each other. In the next step, selecting the 

proper number of points on the scanner view by using the RANSAC algorithm facilitates finding the proper 

corresponding points in order to fit them automatically. Our case study showed effective results based on actual 

data collected by laser scanner and a UAV-mounted camera that were within the SFM result data quality error rate. 

Our next step will focus on a fully automatic registration scheme instead of user mouse picking operations. 

 

Fig. 7: Artifacts in the reconstructed SFM and MVS meshes. Reducing the number of image features may cause 

more unevenly shaped artifacts on originally smooth surfaces. 
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