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Model Description 

The constitutive model used in this calibration report is the unified plasticity model 

for large post-liquefaction shear deformation of sand developed by Wang et al. (2014). 

A brief description of the model is presented here, readers should refer to Wang et al. 

(2014) for the full formulation of the original model.  

The basic equations for the multiaxial model are: 
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tr( ) / 3p  σ  is the mean effective stress, with σ  being the effective stress tensor; 

p s σ I  is the deviatoric stress, I  being the rank two identity tensor; tr( )v  ε  is 

the volumetric strain, ε  being the strain tensor; / 3v e ε I  is the deviatoric strain 

tensor. L is the plastic loading index and m  the deviatoric strain flow direction. The 

deviatoric stress ratio tensor is here defined as 
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The total stress-strain relation can be formulated by combining Eqs. (1) and (2) to 

be: 
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with the elastic moduli G and K defined as suggested by Richart et al. (1970): 
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The critical, maximum stress ratio and reversible dilatancy surfaces are shown 



schematically in Fig. 1. 

 

Fig. 1. Schematic illustration of critical state, maximum stress ratio and reversible 

dilatancy surfaces with mapping rules. 

The function  g   in this model is modified based on Zhang’s (1997) original 

proposition: 
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exp( )b

pM M n    is the peak mobilized stress ratio at triaxial compression and 

f  is the corresponding friction angle, ,p oM  is the peak mobilized stress ratio under 

torsional shear after isotropic consolidation. The state parameter   proposed by Been 

and Jefferies (1985) is introduced to consider the dependency of sand behaviour on the 

current state. 

Plastic loading is determined in three dimensional space by the load index L: 
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Here n  is a unit deviatoric tensor serving as the loading direction in deviatoric 

stress space in the model, and the loading direction L  is defined as 
1

( )
3

 L n n : r I . 

Plastic loading is induced when 0L  , and load reversal occurs at 0L  . 

It is further assumed that the deviatoric strain flow direction m  in Eq. (3) is the 

same as the loading direction in deviatoric stress space so as: 
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Here r  represents the projection of the current stress point on the maximum stress 

ratio surface in deviatoric stress space (Fig. 1). The projection of current stress ratio on 

the maximum stress ratio surface r  is defined as the intersection between the 

extension of the line from the previous load reversal point in
α  to r  and the 

maximum stress ratio surface: 
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When the loading index L is positive, plastic loading occurs. Once L becomes 

negative, load reversal takes place and the projection centre in
α  is updated to be the 

current stress ratio. 

The plastic modulus H can then be defined as: 
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where   is the distance between r  and in
α , and   the distance between r  

and in
α . 

The mapping rule for reversible dilatancy is defined so that the projection of the 



current stress ratio on the reversible dilatancy surface d
r  is the intersection between 

r  and the reversible dilatancy surface: 
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According to the propositions made by Shamoto et al. (1997) and Zhang (1997), 

the dilatancy of sand is decomposed into a reversible and an irreversible component, 

through which the dilatancy during load reversal and cyclic loading can be properly 

reflected. In this model, the dilatancy rate D  is determined by combining the 

reversible part reD  and irreversible part irD : The generation and release of reversible 

dilatancy can then be judged by the angle between dr r  and n : 
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The generation rate of reversible dilatancy is: 
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Reversible dilatancy remains non-positive and is released after load reversal, the 

release rate is defined as: 
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,2red  is another dilatancy parameter used to calculate the release of reversible 

dilatancy. 
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   is a function controlling the reversible dilatancy 

release process, where ird  is an irreversible dilatancy constant and ,

pr

vd ir  is the ,vd ir  

at previous load reversal. 

Irreversible dilatancy rate Dir defined as: 
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Here   is a parameter controlling the decrease rate of irreversible dilatancy, mono  

is the shear strain since the last stress reversal and ,d r  is a reference shear strain.  

are the MacCauley backets that yield x x  if 0x   and 0x   if 0x  . The 

,exp( )d

vd irn   part of the equation reflects asymptotic accumulation of 

irreversible dilatancy, and the part 
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 reflects the 

decreasing dilatancy rate during each monotonic loading process. 

Model Parameters 

The model parameters are listed in Table 1. Note the parameter ,d r  is kept at a 

default value of 0.05. 

Table 1. Model parameters for the simulations. 

Sand oG    h  M  ,1red  ,2red  
ird    ,d r  pn  dn  c  0e    

Ottawa 

F65 
210 0.015 1.2 1.17 0.7 30 0.8 10 0.05 2.25 5.95 0.01 0.7 0.7 

Calibration Method 

The calibration method for some parameters used in the reported model have been 

documented by previous researchers, including the elastic modulus constants (G0,  ), 

plastic modulus parameter ( h ) and critical state parameters (M, 
c , e0,  ). The 4 

critical state parameters based on Vasko (2015) with modifications to better represent 



the experiment data given. 

The state parameter constants np and nd can be determined through 

ln( / ) /p

p pn M    and ln( / ) /d

d dn M M  , where p  and p  are   and 

  at peak stress ratio in a monotonic drained triaxial test, and dM  and d  are 

those at reversible dilatancy sign change points. 

Drained cyclic torsional or triaxial tests should be used for the determination of dn  

here, as dM  can only be acquired once irreversible dilatancy is negligible after a 

number of loading cycles. The reversible dilatancy parameters ,1red  can be determined 

using the relationship between   and vd

p

d

d




 from drained cyclic tests as suggested 

by Zhang and Wang (2012), and ,2red  should then be chosen to ensure the release of 

reversible dilatancy. 

For the irreversible dilatancy parameters ( ird  and   especially), a trial-and-error 

process should be adopted to simulate the stress strain behaviour of undrained cyclic 

torsional/triaxial tests of different initial confining pressure or shear stress amplitude, 

as was described by Zhang and Wang (2012). The parameter ird  mainly determines 

how fast liquefaction is reached in undrained cyclic tests, and   controls the decrease 

rate of irreversible dilatancy. 

The elastic modulus, plastic modulus, and dilatancy parameters are fitted based on 

three tests with various void ratios and CSRs. Simulations of the rest of the tests are 

then carried out without any further changes to the model parameters. 



Simulation Results 

The data for all cyclic torsional test simulations are submitted in spreadsheets along 

with this report.  
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