

Kanto Gakuin University Nozomu YOSHIDA

Introduction

- What method do you use for liquefaction evaluation to average engineer?
 - Japan: e.g. Design specification of Highway bridge
 - U.S.: e.g. Technical paper by Seed 1971
 - North American engineer studies more than Japanese engineer
 - ►NSF Workshop in 1996 and 1998

Technical report NCEER-97-0022, Youd, T. L. etc., Journal of GT, Vol. 127, No. 10

Basic standpoint

- North America
 - United Engineers
 - ►NSF Workshop
 - Study and think
 - Unsuggested (not recommended) issues
- Japan
 - Going my way
 - Many design specifications
 - Do not think or consider
 - Everything is written
 - Do as written following the specification
 - ► Poor engineer education system

Design codes and standards		Year
Title	Organization	1970 1975 1980 1985 1990
1. Design standards for port andharbour facilities	The Japan Port and Harbour Association	n 1
2. Technical standards for port and harbour facilities in Japan	ditto	1990
Seismic design manual for highway bridges	Japan Road Association	Δ
4. Specifications for highway bridges, part 5 seismic design	ditto	1990 3
5. Design standard for railway structures, foundation and	Japan National Railway	\ 0
retaining wall		
6. Design standard for national railway structures (foundation	Japan Society for Civil Engineers	
and retaining wall)		214
Design criteria of building foundation structures and	Architectural Institute of Japan	1986 0 6
commentaries		
8. Recommendations for design of building foundations	ditto	
Notification specifying particulars of technical standards	Ministry of Home Affairs, Fire Defense	l l 1000 X 0
concerning control of hazardous materials	Agency	j, 1900 O- 0
10. Recommended practice for LNG in-ground storage	The Japan Gas Association	1978
11. Guidelines for remedial measures of water works facilities	Japan Water Works Association	
against earthquakes		1979 1979 10
Specifications of construction of tailings dams and	Japan Mining Industry Association,	
commentary	Ministry of International Trade and Indusry	1979 1 1982
13. Guidelines for remedial measures of sewage works	Japan Sewage Works Association	12
facilities against earthquakes		
14. Design manual for common utility ducts	Japan Road Association	1981
15. Highway earthwork series, manual for soft ground	ditto	1986 🗖 — 14
remediation		1986 [7] 15
 Technical guidelines for aseismic design of nuclear power 	Japan Electric Association	
plants		1987 16

Liquefaction assessment was introduced in standards.

 Δ Standard was revised, but liquefaction assessment was not corrected. \bigcirc Standard was revised (corrected).

 Highway bridge, Building foundation, Port facilities, Railway structures

Japanese academic system

- Architectural Institute of Japan
 - Architect
 - Building engineer
- Japan Society of Civil Engineers
 - Road
 - Airport and port
 - Railway
 - Dam
 -
- Governmental office
 - Responsible only what they handles ► Do not like to follow outside organization

Why many specifications

- When damage occurs, who is responsible?
- Japan
 - Engineer: I calculated following the design specification, therefore I am not responsible
 - Governmental office: I made it under the assistance of academic expert, therefore it is unexpected.

Therefore, everything is to be written in the design specification. Otherwise somebody judged it resulting in responsibility

- North America
 - Sued by a customer?
 - ► Moss Landing Marine **Research Institute**

Compared specifications

- NSF workshop recommendation
- Highway bridge and Building foundation
 - Hwy. and Bulg.

Job or volunteer

- If job, revised on a periodic basis
 - Highway bridge by Public Work Research Institute
- If volunteer, may not revised without something happen
 - Building foundation
 - ▶ 1995 Kobe earthquake (Large ground shaking)
 - 2011 Tohoku earthquake (Long duration)

Standard Penetration test

- Turkey, Philippines • Half of Japan
- Recent auto or semiauto machine
 - Cone pulley: 63~73%
 - ► With special care: 80~90%
 - Semi automatic: 84% (average)
 - Full automatic: 81% (Average)
- ISO22476-3
 - Energy correction with measurement method
- JIS A 1219(2013)
 - No description, therefore no measurement method 8

- Falling Japan Hammer ratio Free fall 78 Donut Japan Cone pulley Donut 67 Cone pulley Safety 60 U.S.A Cone pulley 45 Donut

Energy

External load

Bldg.: Equivalent cyclic ■ CSR stress ratio

$$L = \frac{\tau_{av}}{\sigma'_{v0}} = (r_{p})_{d} \frac{\alpha_{max}}{g} \frac{\sigma_{v0}}{\sigma'_{v0}}$$

Hwy.: Stress ratio during an earthquake

$$L = \frac{\tau_{av}}{\sigma_{v0}'} = r_d \frac{\alpha_{max}}{g} \frac{\sigma_{v0}}{\sigma_{v0}'}$$

• Cyclic stress ratio

 $CSR = \frac{\tau_{av}}{\sigma_{v0}'} = 0.65 r_d \frac{\alpha_{max}}{g} \frac{\sigma_{v0}}{\sigma_{v0}'}$

 $r_n=0.1(M-1)$ =0.65/MSF

> MSF: Moment scaling factor Number of effective cycles at τ_{av} =0.65 τ_{max}

Bldg.

Reference liquefaction strength curve

Orion Bridge record during the 1971 San Fernando Eq.

Evaluation of effective number of cycles

		Positi	ve	Negative			
Amp.	Ν	k	Ne	Ν	k	Ne	
τ _{max}					3.00	3.00	
0.70 _{max}	2	1.20	2.40	2	1.20	2.40	
0.65 t _{max}	1	1.00	1.00	2	1.00	2.00	
0.60t _{max}	-	-	-	2	0.70	1.40	
$0.55 \tau_{max}$	6	0.40	2.40	-	-	-	
0.50t _{max}	1	0.20	0.20	3	0.20	0.60	
0.45 _{max}	1	0.10	0.10	2	0.10	0.20	
$0.40\tau_{max}$	2	0.04	0.08	3	0.04	0.12	
$0.35\tau_{max}$	1	0.02	0.02	6	0.02	0.12	
0.30t _{max}	-	-	-	-	-	-	
Sum			6.20		9.84		

N: Number of cycles k: Conversion coef. N_{ρ} :Equivalent number of cycles $=N \times k$

	o			
5 6 M	7 8 9 agnitude of earthquake			
Magnitude	N_e at $0.65 \tau_{max}$			
8.5	26			
7.5	15			
6.75	10			
6	5~6			
5.25	2~3			

- Hwy
 - Shock and vibration type
 - ►Number of cycles 2 and 3
 - \blacklozenge Number of waves larger than τ_{max} before τ_{max} appears
 - Side same as τ_{max}
 - r_n equivalent value 0.55~0.70

MSF: Magnitude scaling factor (N.A.)

$F_{L} = MSF \frac{CRR_{7.5}}{CSR} = \frac{CRR_{7.5}}{CSR / MSF}$

				Arango		Andrus	Youd & Noble			
М	Seed & Idriss	Idriss*1	Ambra seys	a Distance	Energy*3	& Stokoe	P _L <20%	P _L <32%	<i>P_L</i> <50%	
5.5	1.43	2,20	2.86	3.00	2.20	2.8	2.86	3.42	4.44	
6.0	1,32	1.76	2.20	2.00	1.65	2.1	1.93	2.35	2.92	
6.5	1.19	1.44	1.69	1.60	1.40	1.6	1.34	1.66	1.99	
7.0	1.08	1.10	1.30	1.25	1.10	1.25	1.00	1.20	1.39	
7.5	1.00	1.00	1.00	1.00	1.00	1.00	-		1.00	
8.0	0.94	0.84	0.67	0.75	0.85	0.87	-		0.73?	
8.5	0.89	0.72	0.44	-	-	0.65?	-		0.56?	

*1 Lecture at 1995 Seed Memorial Lecture, no paper

- *2 Distance to liquefied site
- *3 Use energy from equivalent cycles by Seed Too conservative

Recommended (No recommendation for M<7.5)

Stress reduction coefficient, r_d

Liquefaction strength Bldg. • Cyclic resistance ratio Shear strain amplitude 0.6 Test vs Back ratio $(\tau_o/\sigma_*^{\prime})$ Analysis 0 A. 0.4 $\frac{\tau av}{\sigma' v^0}$ iquefaction stress Read data 0.3 point from 0.2 figure Severe liq. Medium liq Border line 0 $\frac{10}{50} R = aC_r \left| \frac{16\sqrt{N_a}}{100} \right|$ 40 Corrected N-value, Na 20 30

lence less

Medium lig

Border line

 $CRR_{7.5} = \frac{1}{34 - (N_1)_{60}} + \frac{(N_1)_{60}}{135} + \frac{50}{\left\{10 \cdot (N_1)_{60} + 45\right\}^2} - \frac{1}{200}$

Alluvial/Diluvial vs. Holocene/Pleistocene

- In Japan, Alluvial and Diluvial are used instead of Geologic age (Holocene and Pleistocene)
- In this presentation Holocene=Alluvial, Pleistocene= Diluvial

Findings on frozen sampling

 Frozen sample has been believed to be an undisturbed sample

Liquefaction strength

■ North America $N_a = \alpha + \beta(N_1)_{60}$

Parameter	<i>F_c</i> ≤5%	5%< <i>F_c</i> <35%	35%≤F _c
α	0	$e^{1.76-190/F_c^2}$	5
β	1	$0.99 + F_c^{1.5} / 1000$	1.2

Various factors (N.A.) $(N_1)_{60} = c_N c_E c_B c_R c_s N$

Factor	Variable	Nt.	Correction	
Overburden stress	-	c _N	(P _a /σ' _{v0}) ^{0.5}	6
Overburden stress	-	c _N	C _N ≤1.7	ſ
Energy ratio	Donut	c _E	0.5~1.0	
Energy ratio	Safety	c _E	0.7~1.2	
Energy ratio	Automatic fall donuts	c _E	0.8~1.3	c_{i}
Diameter of borehole	65~115mm	c _B	1.0	
Diameter of borehole	150mm	c _B	1.05	
Diameter of borehole	200mm	c _B	1.15	
Rod length	<3m	c _R	0.75	
Rod length	3∼4m	CR	0.8	
Rod length	4~6m	c _R	0.85	
Rod length	6~10m	c _R	0.95	
Rod length	10~30m	c _R	1.0	
Sampling method	Standard	cs	1.0	
Sampling method	No liner	C _s	1.1~1.3	

 $P_a=101 \text{ kPa}$ $C_N: 2 \rightarrow 1.7$ Better eq. $C_N = \frac{2.2}{1.2 + \sigma'_{v0} / P_a}$

Japan

$$c_N = \sqrt{\frac{98}{\sigma'_v}}$$

$$C_N = \frac{170}{\sigma'_v + 70}$$

Other (N.A.)

- Seed (Original) $F_{L} = MSF \frac{CRR_{7.5}}{CSR} K_{\sigma} K_{\alpha}$
 - \bullet Ko: Confining stress correction
- Recommended among various research

$$K_{\sigma} = (\sigma'_{v0} / P_a)^{f-1}$$

Correction by slope

- Defined ad
 - $\alpha = \tau_{st} / \sigma_{v0}'$
- Determine by triaxial test, but large scatter
 Average engineer do not use

Aging effect

- Seed: 25% increase in 100 days
- Youd: Young ground is more liquefiable
- Not recommended because of short data
- Old sediment (older than several thousands)
 Limited engineer uses aging, not Kσ

Design ground shaking

- N.A.
 - Consider only Magnitude and other factor such as area, duration, fault mechanism is difficult. Conservative side
 - ► Not a big issue in the liquefied site
 - Use Moment magnitude, M_w
 - PGA when liquefaction does not occur
 - Empirical equation considering earthquake magnitude, focal distance, site condition, etc.
 - ► If empirical eq. is not available, seismic response analysis such as SHAKE and DESRA
 - Use amplification factor to be multiplied to PGA at the engineering seismic base layer
 - Require highly engineering judgement

- 2 directional components
 - >geometric mean, but larger value is conservative
- High frequency component (Period<0.1 s)
 - Spiky wave does not cause displacement because of short active time, therefore neglect
 - High frequency component is attenuated in SHAKE and DESRA
 - When using amplification factor, choice of frequency range is important

Japan

- Bldg. (1985)
 - ► Affected by various factors
 - Some of them is not clear
 - Affected by local ground condition
 - > If liquefied, earthquake motion does not propagate to the ground surface
 - Target is horizontally layered deposit, but important is the case with structure exists
 - Proposed method gives rough indication
 - THEN, PGA recorded during past earthquakes is relevant
 200 cm/s2
 - > Kawagishi-cho apartment house in Niigata eq. = 158

- Bldg. (2001)
 - PGA is a result of response of ground, and is affected by the ground conditions.
 - ► Damage limit: 150~200 cm/s²
 - ► Ultimate limit: 350cm/s²
 - PGA at Port Island during the 1995 Kobe eq.
 - PGA in liquefied site

- Hwy 1996
 - \blacktriangleright Change of acceleration by liquefaction is not considered in $\alpha_{\it max}$
 - Considering liquefaction requires effective stress seismic response analysis, but it is impossible
 - ► FL method is a simplified method
 - ► FL method is safety factor method
 - External load becomes large under larger ground shaking

Only level 2 ea.

PGA in non liquefied case

~1995	1996~					
	Ground type	1	2	3		
0.15	Type 1 (Ocean trench)	0.3	0.35	0.4		
	Type 2 (Near field eq.)	0.8	0.7	0.6		
Seismic coefficien						

Comparison between Bldg. and Hwy

1996 version

Definition of F_L

Bldg. $L = r_n \frac{\alpha_{max}}{g} \frac{\sigma_{v0}}{\sigma'_{v0}} r_d$ $r_n = 0.1(M-1)$

Hwy vs. Budg

$$F_{L} = \frac{c_{1}c_{2}c_{3}c_{4}c_{5}R_{L}}{L} = \frac{c_{1}c_{2}c_{5}R_{L}}{L} = \frac{c_{1}c_{5}R_{L}}{L/c_{2}} = \frac{C_{r}R}{r_{n}L}$$
$$C_{r} = 0.9\frac{1+2K_{0}}{3} = 0.57$$

38

Relative density, Dr

	D _r (%)		φ (deg.)		
SPTN			Peck	Meyerhof	
0~4	very loose	0~20	<28.5	<30	
4~10	loose	20~40	28.5~30	30~35	
10~30	medium	40~60	30~36	35~40	
30~50	dense	60~80	36~41	40~45	
50 IX_L	very dense	80~100	>41	>45	

Meyerhof $D_r = 21 \sqrt{\frac{100N}{\sigma'_v + 70}}$

Accuracy (2011, PWRI)

	Liq.	No Lq.
$F_L \leq 1$	53	35
$F_{L} > 1$	0	24

Tokyo Bay area: Old fill / natural deposit

- Many no liq. site although $F_L \leq 1$
- Fill after 1945 liquefy
- There is no clear difference between borehole data between liq. and no liq. sites
- Tone River area
 - F_L is relatively large in the liquefied sites
 - Thin thickness in case $F_L \leq 1$

Accuracy (2007)

	PI	Tonankai	Tomakomai	TNK	ТМК
Liq. both	64.7	6.9	4.2	51.7	15.8
Conservative	15.0	0.4	4.9	34.1	73.8
hazard ratio	1.4	46.8	11.6	2.1	0.1
no liq. both	18.9	45.9	79.3	12.2	10.3
Accuracy rate	83.6	52.8	83.5	63.9	26.1

 Proposed correction, c2=0.5 is too conservative!

41

250

 Large scatter under ocean trench type eq.

 r_d is good evaluation

Concluding remarks

- Same framework, but different definition
- Liquefaction strength
 - Average or boundary
 - ▶ If average, half of them is in critical side!
 - Result was conservative, Why?
- Parameters
 - SPT N-value, overburden stress, fines contents
 - ► Is those sufficient? No!
 - What are other parameters?
 - ≻ Aging, Kα,